skip to main content


Title: The Role of Moisture Pathways on Snowfall Amount and Distribution in the Payette Mountains of Idaho

The pathways air travels from the Pacific Ocean to the Intermountain West of the United States are important for understanding how air characteristics change and how this translates to the amount and distribution of snowfall. Recent studies have identified the most common moisture pathways in the Intermountain West, especially for heavy precipitation events. However, the role of moisture pathways on snowfall amount and distribution in specific regions remains unclear. Here, we investigate 24 precipitation events in the Payette Mountains of Idaho during January–March 2017 to understand how local atmospheric conditions are tied to three moisture pathways and how it impacts snowfall amount and distribution. During one pathway, southwesterly, moist, tropical air is directed into the Central Valley of California where the air is blocked by the Sierra Nevada, redirected northward and over lower terrain north of Lake Tahoe into the Snake River Plain of Idaho. Other pathways consist of unblocked flows that approach the coast of California from the southwest and then override the northern Sierra Nevada and southern Cascades, and zonal flows approaching the coast of Oregon overriding the Oregon Cascades. Air masses in the Payette Mountains of Idaho associated with Sierra-blocked flow were observed to be warmer, moister, and windier compared to the other moisture pathways. During Sierra-blocked flow, higher snowfall rates, in terms of mean reflectivity, were observed more uniformly distributed throughout the region compared to the other flows, which observed lower snowfall rates that were predominantly collocated with areas of higher terrain. Of the total estimated snowfall captured in this study, 67% was observed during Sierra-blocked flow.

 
more » « less
Award ID(s):
1546963
NSF-PAR ID:
10145168
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
148
Issue:
5
ISSN:
0027-0644
Page Range / eLocation ID:
p. 2033-2048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A cold-frontal passage through northern Utah was studied using observations collected during intensive observing period 4 of the Intermountain Precipitation Experiment (IPEX) on 14–15 February 2000. To illustrate some of its nonclassic characteristics, its origins are considered. The front developed following the landfall of two surface features on the Pacific coast (hereafter, the cold-frontal system). The first feature was a surface pressure trough and wind shift associated with a band of precipitation and rope cloud with little, if any, surface baroclinicity. The second, which made landfall 4 h later, was a wind shift associated with weaker precipitation that possessed a weak temperature drop at landfall (1˚C in 9 h), but developed a stronger temperature drop as it moved inland over central California (4˚–6˚C in 9 h). As the first feature moved into the Great Basin, surface temperatures ahead of the trough increased due to downslope flow and daytime heating, whereas temperatures behind the trough decreased as precipitation cooled the near-surface air. Coupled with confluence in the lee of the Sierra Nevada, this trough developed into the principal baroclinic zone of the cold-frontal system (8˚C in less than an hour), whereas the temperature drop with the second feature weakened further. The motion of the surface pressure trough was faster than the post-trough surface winds and was tied to the motion of the short-wave trough aloft. This case, along with previously published cases in the Intermountain West, challenges the traditional conceptual model of cold-frontal terminology, structure, and evolution. 
    more » « less
  2. A prolonged period of winter monsoonal flow brought heavy sea-effect snowfall to the Hokuriku region along the west coast of the Japanese island of Honshu from 2 to 7 February 2010. Snowfall in some locations exceeded 140 cm, but the distribution within the event was highly variable. We examine the factors contributing to these variations using data from a Japan Meteorological Agency (JMA) C-band surveillance radar, JMA soundings, surface precipitation observations, and a Weather Research and Forecasting (WRF) Model simulation. There were three distinct periods during the event. Period 1 featured relatively weak flow with precipitation confined mainly to the coast and lowlands. Precipitation maxima were located where the flow ascended: 1) over terrain-blocked air, 2) at the foot of a high flow-normal barrier, or 3) relatively unimpeded over the lower mountain ranges. Flow strengthened during period 2, yielding stronger vertical velocities over the terrain with precipitation maxima shifting inland and to higher elevation. The flow strengthened further in period 3, with the precipitation maxima shifting higher in elevation and into the lee, with almost no precipitation falling in the lowlands. Thus, greater inland penetration and enhancement of precipitation occurred as the flow speed increased, but additional factors such as the subcloud sublimation of hydrometeors and the convective instability also contribute to differences between periods 2 and 3. These results illustrate the importance of incident flow strength in modulating the distribution and enhancement of snowfall in global lake- and sea-effect regions.

     
    more » « less
  3. Abstract

    Understanding the processes that shape genetic diversity by either promoting or preventing population divergence can help identify geographic areas that either facilitate or limit gene flow. Furthermore, broadly distributed species allow us to understand how biogeographic and ecogeographic transitions affect gene flow. We investigated these processes using genomic data in the Northern Alligator Lizard (Elgaria coerulea), which is widely distributed in Western North America across diverse ecoregions (California Floristic Province and Pacific Northwest) and mountain ranges (Sierra Nevada, Coastal Ranges, and Cascades). We collected single-nucleotide polymorphism data from 120 samples of E. coerulea. Biogeographic analyses of squamate reptiles with similar distributions have identified several shared diversification patterns that provide testable predictions for E. coerulea, including deep genetic divisions in the Sierra Nevada, demographic stability of southern populations, and recent post-Pleistocene expansion into the Pacific Northwest. We use genomic data to test these predictions by estimating the structure, connectivity, and phylogenetic history of populations. At least 10 distinct populations are supported, with mixed-ancestry individuals situated at most population boundaries. A species tree analysis provides strong support for the early divergence of populations in the Sierra Nevada Mountains and recent diversification into the Pacific Northwest. Admixture and migration analyses detect gene flow among populations in the Lower Cascades and Northern California, and a spatial analysis of gene flow identified significant barriers to gene flow across both the Sierra Nevada and Coast Ranges. The distribution of genetic diversity in E. coerulea is uneven, patchy, and interconnected at population boundaries. The biogeographic patterns seen in E. coerulea are consistent with predictions from co-distributed species.

     
    more » « less
  4. Abstract

    Heavy orographic snowfall can disrupt transportation and threaten lives and property in mountainous regions but benefits water resources, winter sports, and tourism. Little Cottonwood Canyon (LCC) in northern Utah’s Wasatch Range is one of the snowiest locations in the interior western United States and frequently observes orographic snowfall extremes with threats to transportation, structures, and public safety due to storm-related avalanche hazards. Using manual new-snow and liquid precipitation equivalent (LPE) observations, ERA5 reanalyses, and operational radar data, this paper examines the characteristics of cool-season (October–April) 12-h snowfall extremes in upper LCC. The 12-h extremes, defined based on either 95th percentile new snow or LPE, occur for a wide range of crest-level flow directions. The distribution of LPE extremes is bimodal with maxima for south-southwest or north-northwest flow, whereas new-snow extremes occur most frequently during west-northwest flow, which features colder storms with higher snow-to-liquid ratios. Both snowfall and LPE extremes are produced by diverse synoptic patterns, including inland-penetrating or decaying atmospheric rivers from the south through northwest that avoid the southern high Sierra Nevada, frontal systems, post-cold-frontal northwesterly flow, south-southwesterly cold-core flow, and closed low pressure systems. Although often associated with heavy precipitation in other mountainous regions, the linkages between local integrated water vapor transport (IVT) and orographic precipitation extremes in LCC are relatively weak, and during post-cold-frontal northwesterly flow, highly localized and intense snowfall can occur despite low IVT. These results illustrate the remarkable diversity of storm characteristics producing orographic snowfall extremes at this interior continental mountain location.

    Significance Statement

    Little Cottonwood Canyon in northern Utah’s central Wasatch Range frequently experiences extreme snowfall events that pose threats to lives and property. In this study, we illustrate the large diversity of storm characteristics that produce this extreme snowfall. Meteorologists commonly use the amount of water vapor transport in the atmosphere to predict heavy mountain precipitation, but that metric has limited utility in Little Cottonwood Canyon where heavy snowfall can occur with lower values of such transport. Our results can aid weather forecasting in the central Wasatch Range and have implications for understanding precipitation processes in mountain ranges throughout the world.

     
    more » « less
  5. Abstract

    The western United States region, an economic and agricultural powerhouse, is highly dependent on winter snowpack from the mountain west. Coupled with increasing water and renewable electricity demands, the predictability and viability of snowpack resources in a changing climate are becoming increasingly important. In Idaho, specifically, up to 75% of the state’s electricity production comes from hydropower, which is dependent on the timing and volume of spring snowmelt. While we know that 1 April snowpack is declining from SNOTEL observations and is expected to continue to decline as indicated by GCM predictions, our ability to understand the variability of snowfall accumulation and distribution at the regional level is less robust. In this paper, we analyze snowfall events using 0.9-km-resolution WRF simulations to understand the variability of snowfall accumulation and distribution in the mountains of Idaho between 1 October 2016 and 31 April 2017. Various characteristics of snowfall events throughout the season are evaluated, including the spatial coverage, event durations, and snowfall rates, along with the relationship between cloud microphysical variables—particularly liquid and ice water content—on snowfall amounts. Our findings suggest that efficient snowfall conditions—for example, higher levels of elevated supercooled liquid water—can exist throughout the winter season but are more impactful when surface temperatures are near or below freezing. Inefficient snowfall events are common, exceeding 50% of the total snowfall events for the year, with some of those occurring in peak winter. For such events, glaciogenic cloud seeding could make a significant impact on snowpack development and viability in the region.

    Significance Statement

    The purpose and significance of this study is to better understand the variability of snowfall event accumulation and distribution in the Payette Mountains region of Idaho as it relates to the local topography, the drivers of snowfall events, the cloud microphysical properties, and what constitutes an efficient or inefficient snowfall event (i.e., its ability to convert atmospheric liquid water into snowfall). As part of this process, we identify how many snowfall events in a season are inefficient to determine the number of snowfall events in a season that are candidates for enhancement by glaciogenic cloud seeding.

     
    more » « less