skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonclassic evolution of a cold-frontal system across the western United States during the Intermountain Precipitation Experiment
A cold-frontal passage through northern Utah was studied using observations collected during intensive observing period 4 of the Intermountain Precipitation Experiment (IPEX) on 14–15 February 2000. To illustrate some of its nonclassic characteristics, its origins are considered. The front developed following the landfall of two surface features on the Pacific coast (hereafter, the cold-frontal system). The first feature was a surface pressure trough and wind shift associated with a band of precipitation and rope cloud with little, if any, surface baroclinicity. The second, which made landfall 4 h later, was a wind shift associated with weaker precipitation that possessed a weak temperature drop at landfall (1˚C in 9 h), but developed a stronger temperature drop as it moved inland over central California (4˚–6˚C in 9 h). As the first feature moved into the Great Basin, surface temperatures ahead of the trough increased due to downslope flow and daytime heating, whereas temperatures behind the trough decreased as precipitation cooled the near-surface air. Coupled with confluence in the lee of the Sierra Nevada, this trough developed into the principal baroclinic zone of the cold-frontal system (8˚C in less than an hour), whereas the temperature drop with the second feature weakened further. The motion of the surface pressure trough was faster than the post-trough surface winds and was tied to the motion of the short-wave trough aloft. This case, along with previously published cases in the Intermountain West, challenges the traditional conceptual model of cold-frontal terminology, structure, and evolution.  more » « less
Award ID(s):
1929602
PAR ID:
10172399
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Weather and forecasting
Volume:
35
ISSN:
1520-0434
Page Range / eLocation ID:
255-271
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shortly after 0600 UTC (midnight MDT) on 9 June 2020, a rapidly intensifying and elongating convective system produced a macroburst and extensive damage in the town of Akron on Colorado’s eastern Plains. Instantaneous winds were measured as high as 51.12 m s −1 at 2.3 m AGL from an eddy covariance (EC) tower, and a 50.45 m s −1 wind gust from an adjacent 10-m tower became the highest official thunderstorm wind gust ever measured in Colorado. Synoptic-scale storm motion was southerly, but surface winds were northerly in a post-frontal airmass, creating strong vertical wind shear. Extremely high-resolution temporal and spatial observations allow for a unique look at pressure and temperature tendencies accompanying the macroburst and reveal intriguing wave structures in the outflow. At 10-Hz frequency, the EC tower recorded a 5-hPa pressure surge in 19 seconds immediately following the strongest winds, and a 15-hPa pressure drop in the following three minutes. Surface temperature also rose 1.5°C in less than one minute, concurrent with the maximum wind gusts, and then fell sharply by 3.5°C in the following minute. Shifting wind direction observations and an NWS damage survey are suggestive of both radial outflow and a gust front passage, and model proximity soundings reveal a well-mixed surface layer topped by a strong inversion and large low-level vertical wind shear. Despite the greatest risk of severe winds forecast to be northeast of Colorado, convection-allowing model forecasts from 6-18 h in advance did show similar structures to what occurred, warranting further simulations to investigate the unique mesoscale and misoscale features associated with the macroburst. 
    more » « less
  2. Abstract Influences of the ocean mixed layer (OML) dynamics on intensity, pathway, and landfall of October 2012 Hurricane Sandy were examined through an experiment using the Weather Research and Forecasting (WRF) model. The WRF model was run for two cases with or without coupling to the OML. The OML in the WRF was calculated by an oceanic mixed layer submodel. The initial conditions of the depth and mean water temperature of the OML were specified using Global‐FVCOM and Global‐HYCOM fields. The comparison results between these two cases clearly show that including the OML dynamics enhanced the contribution of vertical mixing to the air‐sea heat flux. When the hurricane moved toward the coast, the local OML rapidly deepened with an increase of storm wind. Intense vertical mixing brought cold water in the deep ocean toward the surface to produce a cold wake underneath the storm, with the lowest sea temperature at the maximum wind zone. This process led to a significant latent heat loss from the ocean within the storm and hence rapid drops of the air temperature and vapor mixing ratio above the sea surface. As a result, the storm was intensified as the central sea level pressure dropped. Improving air pressure simulation with OML tended to reduce the storm size and strengthened the storm intensity and hence provided a better simulation of hurricane pathway and landfall. 
    more » « less
  3. null (Ed.)
    In this paper, subtidal responses of Barataria Bay to an atmospheric cold front in 2014 and Hurricane Barry of 2019 are studied. The cold fronts had shorter influencing periods (1 to 3 days), while Hurricane Barry had a much longer influencing period (about 1 week). Wind direction usually changes from southern quadrants to northern quadrants before and after a cold front’s passage. For a hurricane making its landfall at the norther Gulf of Mexico coast, wind variation is dependent on the location relative to the location of landfall. Consequently, water level usually reaches a trough after the maximum cold front wind usually; while after the maximum wind during a hurricane, water level mostly has a surge, especially on the right-hand side of the hurricane. Water level variation induced by Hurricane Barry is about 3 times of that induced by a cold front event. Water volume flux also shows differences under these two weather types: the volume transport during Hurricane Barry was 4 times of that during a cold front. On the other hand, cold front events are much more frequent (30–40 times a year), and they lead to more frequent exchange between Barataria Bay and the coastal ocean. 
    more » « less
  4. Abstract The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX) was conducted during February–March 2022 to observe multiscale processes impacting the variability and predictability of precipitation type and amount under near-freezing conditions over the Saint Lawrence River valley. Intensive observation period (IOP) 4 of the campaign occurred 17–18 February 2022 in association with an upper-level trough positioned over the north-central United States and a surface cyclone that traversed the study domain along a frontal boundary that extended northeast of the cyclone. The timing of precipitation-type transitions during the event was consistently too slow within operational forecast models at 2–5-day lead times. Consequently, this study aims to understand how forecast model representations of dynamical and thermodynamical processes on the synoptic scale to mesoscale may have influenced the predictability of precipitation type during IOP4. To do so, an ensemble of operational forecasts from the Global Ensemble Forecast System initialized 5 days prior to IOP4 was divided into three clusters according to the strength and position of the frontal zone over the Saint Lawrence River Valley during the event. Ensemble sensitivity analyses and spatial composites suggest that differences in the position of the frontal zone between clusters are dynamically linked to the differences in the structure of the associated upstream upper-level trough at prior forecast lead times. A diagnosis of the divergent circulation prior to the event suggests that feedback mechanisms between the surface cyclone, its attendant frontal boundaries, and the upper-level flow pattern help to further explain differences in the frontal zone between clusters. Significance StatementMixed-phase precipitation events, which can produce rain, freezing rain, ice pellets, and snow, are difficult to accurately forecast. This study investigates the large-scale processes influencing our ability to accurately forecast the precipitation type and amount during one of these events that was observed by a field campaign in February 2022. In forecasts initialized 5 days prior to the event, differences in the forecast upper-level atmospheric conditions led to differences in the forecast interactions between the upper-level flow and a low pressure system at the surface. As a result, there was large uncertainty in the predicted position of a surface front associated with the low pressure system and the precipitation-type distribution during the event. 
    more » « less
  5. null (Ed.)
    Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage. 
    more » « less