skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: False data injection attacks against contingency analysis in power grids: poster
The smart grid provides efficient and cost-effective management of the electric energy grid by allowing real-time monitoring, coordinating, and controlling the system using communication networks between physical components. This inherent complexity significantly increases the vulnerabilities and attack surface in the smart grid due to misconfigurations or the lack of security hardening. Therefore, it is important to ensure a secure and resilient operation of the smart grid by proactive identification of potential threats, impact assessment, and cost-efficient mitigation planning. This paper aims to achieve these goals through the development of an efficient security framework for the Energy Management System (EMS), a core smart grid component. In this paper, we present a framework that combines formal analytic with PowerWorld simulator which verifies the solution model to investigate the feasibility of false data injection attacks against contingency analysis in the power grid. We evaluate the impact of such attacks by running experiments using synthetic data on the standard IEEE test cases.  more » « less
Award ID(s):
1929183
PAR ID:
10145191
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Conference on Security and Privacy in Wireless and Mobile Networks
Page Range / eLocation ID:
343 to 344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integration of complex and high-speed electronic components in the state of art electric power system enhances the need for improved security infrastructure and resilience against invasive and non-invasive attacks on the smart grid. A modern smart grid system integrates a variety of instruments and standards to achieve cost-effective and time-effective energy measurement and management. As the fundamental component in the smart grid, the smart meter supports real-time monitoring, automatic control, and high-speed communication along with power consumption recording. However, the wide use of smart meters also increases privacy and security concerns. In this paper, we demonstrate the vulnerability of side-channel attacks on secure communication in smart grids for software-based and hardware-based implementations. 
    more » « less
  2. null (Ed.)
    In recent years, smart grid communications (SGC) has evolved to use new technologies not only for data delivery but also for enhanced smart grid (SG) security and reliability. Software Defined Networks (SDN) has proved to be a reliable and efficient architecture for handling diverse communication systems due to their ability to divide responsibilities of the network using control plane and data plane. This paper presents a graph learning approach for detecting and identifying Distributed Denial of Service (DDoS) attacks in SDN-SGC systems (GLASS). GLASS is a two phase framework that (1) detects if SDN-SGC is under DDoS attack using supervised graph deep learning and then (2) identifies the compromised entities using unsupervised learning methods. Network performance statistics are used for modeling SDN-SGC graphs, which train Graph Convolutional Neural Networks (GCN) to extract latent representations caused by DDoS attacks. Finally, spectral clustering is used to identify compromised entities. The experimental results, obtained by analysis of an IEEE 118-bus system, show the average throughput for compromised entities is able to maintain 84% of normal traffic level with GLASS, compared to achieving only 4% of normal throughput caused by DDoS attacks on compromised entities without the GLASS framework. 
    more » « less
  3. Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1]. 
    more » « less
  4. Optimal Power Flow (OPF) is a crucial part of the Energy Management System (EMS) as it determines individual generator outputs that minimize generation cost while satisfying transmission, generation, and system level operating constraints. OPF relies on a core EMS routine, namely state estimation, which computes system states, principally bus voltages/phase angles at the buses. However, state estimation is vulnerable to false data injection attacks in which an adversary can alter certain measurements to corrupt the estimator's solution without being detected. It is also shown that a stealthy attack on state estimation can increase the OPF cost. However, the impact of stealthy attacks on the economic and secure operation of the system cannot be comprehensively analyzed due to the very large size of the attack space. In this paper, we present a hybrid framework that combines formal analytics with Simulink-based system modeling to investigate the feasibility of stealthy attacks and their influence on OPF in a time-efficient manner. The proposed approach is illustrated on synthetic case studies demonstrating the impact of stealthy attacks in different attack scenarios. We also evaluate the impact analysis time by running experiments on standard IEEE test cases and the results show significant scalability of the framework. 
    more » « less
  5. Falsified data from compromised Phasor Measurement Units (PMUs) in a smart grid induce Energy Management Systems (EMS) to have an inaccurate estimation of the state of the grid, disrupting various operations of the power grid. Moreover, the PMUs deployed at the distribution layer of a smart grid show dynamic fluctuations in their data streams, which make it extremely challenging to design effective learning frameworks for anomaly based attack detection. In this paper, we propose a noise resilient learning framework for anomaly based attack detection specifically for distribution layer PMU infrastructure, that show real time indicators of data falsifications attacks while offsetting the effect of false alarms caused by the noise. Specifically, we propose a feature extraction framework that uses some Pythagorean Means of the active power from a cluster of PMUs, reducing multi-dimensional nature of the PMU data streams via quick big data summarization. We also propose a robust and noise resilient methodology for learning thresholds based on generalized robust estimation theory of our invariant feature. We experimentally validate our approach and demonstrate improved reliability performance using two completely different datasets collected from real distribution level PMU infrastructures. 
    more » « less