skip to main content


Title: Novel layered Bi 3 MoM T O 9 (M T = Mn, Fe, Co and Ni) thin films with tunable multifunctionalities
Bi 3 MoM T O 9 (BMoM T O; M T , transition metals of Mn, Fe, Co and Ni) thin films with a layered supercell structure have been deposited on LaAlO 3 (001) substrates by pulsed laser deposition. Microstructural analysis suggests that pillar-like domains with higher transition metal concentration ( e.g. , Mn, Fe, Co and Ni) are embedded in the Mo-rich matrix with layered supercell structures. The layered supercell structure of the BMoM T O thin films accounts for the anisotropic multifunctionalities such as the magnetic easy axis along the in-plane direction, and the anisotropic optical properties. Ferroelectricity and ferromagnetism have been demonstrated in the thin films at room temperature, which confirms the multiferroic nature of the system. By varying the transition metal M T in the film, the band gaps of the BMoM T O films can be effectively tuned from 2.44 eV to 2.82 eV, while the out-of-plane dielectric constant of the thin films also varies. The newly discovered layered nanocomposite systems present their potential in ferroelectrics, multiferroics and non-linear optics.  more » « less
Award ID(s):
1809520 1565822
NSF-PAR ID:
10145315
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
10
ISSN:
2040-3364
Page Range / eLocation ID:
5914 to 5921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide materials are a group of prospective candidates due to their superior room-temperature multiferroic response. Here, an ultrathin Bi 3 Fe 2 Mn 2 O 10+ δ layered supercell (BFMO322 LS) structure was deposited on an LaAlO 3 (LAO) (001) substrate using pulsed laser deposition. Microstructural analysis suggests that a layered supercell (LS) structure consisting of two-layer-thick Bi–O slabs and two-layer-thick Mn/Fe–O octahedra slabs was formed on top of the pseudo-perovskite interlayer (IL). A robust saturation magnetization value of 129 and 96 emu cm −3 is achieved in a 12.3 nm thick film in the in-plane (IP) and out-of-plane (OP) directions, respectively. The ferromagnetism, dielectric permittivity, and optical bandgap of the ultrathin BFMO films can be effectively tuned by thickness and morphology variation. In addition, the anisotropy of all ultrathin BFMO films switches from OP dominating to IP dominating as the thickness increases. This study demonstrates the ultrathin BFMO film with tunable multifunctionalities as a promising candidate for novel integrated spintronic devices. 
    more » « less
  2. Abstract

    The anisotropic dielectric functions (DF) of corundum structuredm-planeα-(AlxGa1−x)2O3thin films (up tox= 0.76) grown onm-plane sapphire substrate by metalorganic CVD have been investigated. IR and visible–UV spectroscopic ellipsometry yields the DFs, while X-ray diffraction revealed the lattice parameters (a,m,c), showing the samples are almost fully relaxed. Analysis of the IR DFs from 250 to 6000 cm−1by a complex Lorentz oscillator model yields the anisotropic IR active phononsEuandA2uand the shift towards higher wavenumbers with increasing Al content. Analyzing the UV DFs from 0.5 to 6.6 eV we find the change in the dielectric limitsεand the shift of the Γ-point transition energies with increasing Al content. This results in anisotropic bowing parameters forα-(AlxGa1−x)2O3ofb= 2.1 eV andb∣∣= 1.7 eV.

     
    more » « less
  3. Self-assembled vertically aligned metal–oxide (Ni–CeO 2 ) nanocomposite thin films with novel multifunctionalities have been successfully deposited by a one-step growth method. The novel nanocomposite structures presents high-density Ni-nanopillars vertically aligned in a CeO 2 matrix. Strong and anisotropic magnetic properties have been demonstrated, with a saturation magnetization ( M s ) of ∼175 emu cm −3 and ∼135 emu cm −3 for out-of-plane and in-plane directions, respectively. Such unique vertically aligned ferromagnetic Ni nanopillars in the CeO 2 matrix have been successfully incorporated in high temperature superconductor YBa 2 Cu 3 O 7 (YBCO) coated conductors as effective magnetic flux pinning centers. The highly anisotropic nanostructures with high density vertical interfaces between the Ni nanopillars and CeO 2 matrix also promote the mixed electrical and ionic conductivities out-of-plane and thus demonstrate great potential as nanocomposite anode materials for solid oxide fuel cells and other potential applications requiring anisotropic ionic transport properties. 
    more » « less
  4. Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 . 
    more » « less
  5. Abstract

    Layered transition metal oxides are appealing cathodes for sodium‐ion batteries due to their overall advantages in energy density and cost. But their stabilities are usually compromised by the complicated phase transition and the oxygen redox, particularly when operating at high voltages, leading to poor structural stability and substantial capacity loss. Here an integrated strategy combing the high‐entropy design with the superlattice‐stabilization to extend the cycle life and enhance the rate capability of layered cathodes is reported. It is shown that the as‐prepared high‐entropy Na2/3Li1/6Fe1/6Co1/6Ni1/6Mn1/3O2cathode enables a superlattice structure with Li/transition metal ordering and delivers excellent electrochemical performance that is not affected by the presence of phase transition and oxygen redox. It achieves a high reversible capacity (171.2 mAh g−1at 0.1 C), a high energy density (531 Wh kg−1), extended cycling stability (89.3% capacity retention at 1 C for 90 cycles and 63.7% capacity retention at 5 C after 300 cycles), and excellent fast‐charging capability (78 mAh g−1at 10 C). This strategy would inspire more rational designs that can be leveraged to improve the reliability of layered cathodes for secondary‐ion batteries.

     
    more » « less