skip to main content

Title: Tailorable multifunctionalities in ultrathin 2D Bi-based layered supercell structures
Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide materials are a group of prospective candidates due to their superior room-temperature multiferroic response. Here, an ultrathin Bi 3 Fe 2 Mn 2 O 10+ δ layered supercell (BFMO322 LS) structure was deposited on an LaAlO 3 (LAO) (001) substrate using pulsed laser deposition. Microstructural analysis suggests that a layered supercell (LS) structure consisting of two-layer-thick Bi–O slabs and two-layer-thick Mn/Fe–O octahedra slabs was formed on top of the pseudo-perovskite interlayer (IL). A robust saturation magnetization value of 129 and 96 emu cm −3 is achieved in a 12.3 nm thick film in the in-plane (IP) and out-of-plane (OP) directions, respectively. The ferromagnetism, dielectric permittivity, and optical bandgap of the ultrathin BFMO films can be effectively tuned by thickness and morphology variation. In addition, the anisotropy of all ultrathin BFMO films switches from OP dominating to IP dominating as the thickness increases. This study demonstrates the ultrathin BFMO film with tunable multifunctionalities as a promising candidate for novel integrated spintronic devices.  more » « less
Award ID(s):
2016453 1809520
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
16672 to 16679
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bi 3 MoM T O 9 (BMoM T O; M T , transition metals of Mn, Fe, Co and Ni) thin films with a layered supercell structure have been deposited on LaAlO 3 (001) substrates by pulsed laser deposition. Microstructural analysis suggests that pillar-like domains with higher transition metal concentration ( e.g. , Mn, Fe, Co and Ni) are embedded in the Mo-rich matrix with layered supercell structures. The layered supercell structure of the BMoM T O thin films accounts for the anisotropic multifunctionalities such as the magnetic easy axis along the in-plane direction, and the anisotropic optical properties. Ferroelectricity and ferromagnetism have been demonstrated in the thin films at room temperature, which confirms the multiferroic nature of the system. By varying the transition metal M T in the film, the band gaps of the BMoM T O films can be effectively tuned from 2.44 eV to 2.82 eV, while the out-of-plane dielectric constant of the thin films also varies. The newly discovered layered nanocomposite systems present their potential in ferroelectrics, multiferroics and non-linear optics. 
    more » « less
  2. Abstract

    Layer thickness was found to have a significant effect on the irreversible electromechanical deformation and the failure mechanism in polycarbonate (PC)/poly (vinylidene fluoride) (PVDF) multilayered films when subjected to an electrical impulse in a DC needle‐plane configuration. Three distinct regions of behavior were observed. Region I comprised thick layer systems that exhibited only irreversible center deformation. The improvement to failure resistance compared to the monolithic films was attributed to the interphase between the two components. Region II films with an intermediate layer thickness showed both an irreversible center deformation and a treeing mechanism which were observed to simultaneously occur. The surface treeing mechanism, similar to the lightning treeing phenomena in nature, occurs only at impact rates. The tree morphology showed large amounts of plowing, indicating that this damage mechanism can dissipate a large amount of energy prior to electromechanical fracture of the film. Region III films comprise ultrathin layers in the nanoscale and showed no treeing. The unique interphase region between these ultrathin layers was estimated to be at least ten percent of the overall layered structure. These films behaved similar to monolithic materials with improved electromechanical failure characteristics. This work complements the enhanced dielectric performance of multilayer films observed in earlier investigations.

    more » « less
  3. Recently, a zipper two-dimensional (2D) material Bi 2 O 2 Se belonging to the layered bismuth oxychalcogenide (Bi 2 O 2 X: X = S, Se, Te) family, has emerged as an alternate candidate to van der Waals 2D materials for high-performance electronic and optoelectronic applications. This hints towards exploring the other members of the Bi 2 O 2 X family for their true potential and bismuth oxysulfide (Bi 2 O 2 S) could be the next member for such applications. Here, we demonstrate for the first time, the scalable room-temperature chemical synthesis and near-infrared (NIR) photodetection of ultrathin Bi 2 O 2 S nanosheets. The thickness of the freestanding nanosheets was around 2–3 nm with a lateral dimension of ∼80–100 nm. A solution-processed NIR photodetector was fabricated from ultrathin Bi 2 O 2 S nanosheets. The photodetector showed high performance, under 785 nm laser illumination, with a photoresponsivity of 4 A W −1 , an external quantum efficiency of 630%, and a normalized photocurrent-to-dark-current ratio of 1.3 × 10 10 per watt with a fast response time of 100 ms. Taken together, the findings suggest that Bi 2 O 2 S nanosheets could be a promising alternative 2D material for next-generation large-area flexible electronic and optoelectronic devices. 
    more » « less
  4. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.


    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1


    more » « less
  5. Abstract The structural properties of co-deposited ultrathin PtSe 2 films grown at low temperatures by molecular beam epitaxy on c-plane Al 2 O 3 are studied. By simultaneously supplying a Se flux from a Knudsen cell and Pt atoms from an electron-beam evaporator, crystalline (001)-oriented PtSe 2 films were formed between 200 °C and 300 °C. The long separation between substrate and electron beam evaporator of about 60 cm ensured minimal thermal load. At optimum deposition temperatures, a ten times or even higher supply rate of Se compared to Pt ensured that the pronounced volatility of the Se was compensated and the PtSe 2 phase was formed and stabilized at the growth front. Postgrowth anneals under a Se flux was found to dramatically improve the crystalline quality of the films. Even before the postgrowth anneal in Se, the crystallinity of PtSe 2 films grown with the co-deposition method was superior to films realized by thermal assisted conversion. Postgrowth annealed films showed Raman modes with narrower peaks and more than twice the intensity. Transmission electron microscopy investigations revealed that the deposited material transitioned to a two-dimensional layered structure only after the postgrowth anneal. PtSe 2 growth was found to start as single layer islands that preferentially nucleated at atomic steps of the substrate and progressed in a layer-by-layer like fashion. A close to ideal wetting behavior resulted in coalesced PtSe 2 films after depositing about 1.5 PtSe 2 layers. Detailed Raman investigation of the observed PtSe 2 layer breathing modes of films grown under optimized co-deposition conditions revealed an interlayer coupling force constant of 5.0–5.6 × 10 19 N m −3 . 
    more » « less