skip to main content


Title: Anisotropic dielectric function, direction dependent bandgap energy, band order, and indirect to direct gap crossover in α -(Al x Ga 1−x ) 2 O 3 (0≤x≤1)
Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 .  more » « less
Award ID(s):
2044049 1808715
NSF-PAR ID:
10393091
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
5
ISSN:
0003-6951
Page Range / eLocation ID:
052101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of the deposition method, orientation, and Al composition of β-(Al x Ga 1−x ) 2 O 3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the [Formula: see text] orientation. The results from this study on MOCVD growth and band offsets of amorphous Al 2 O 3 deposited on differently oriented β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films will potentially contribute to the design and fabrication of future high-performance β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 based transistors using MOCVD in situ deposited Al 2 O 3 as a gate dielectric. 
    more » « less
  2. We determine the composition dependence of the transverse and longitudinal optical infrared-active phonon modes in rhombohedral α-(AlxGa1−x)2O3alloys by far-infrared and infrared generalized spectroscopic ellipsometry. Single-crystalline high quality undoped thin-films grown on m-plane oriented α-Al2O3substrates with x =  0.18, 0.37, and 0.54 were investigated. A single mode behavior is observed for all phonon modes, i.e., their frequencies shift gradually between the equivalent phonon modes of the isostructural binary parent compounds. We also provide physical model line shape functions for the anisotropic dielectric functions. We use the anisotropic high-frequency dielectric constants for polarizations parallel and perpendicular to the lattice c axis measured recently by Hilfiker et al. [Appl. Phys. Lett. 119, 092103 (2021)], and we determine the anisotropic static dielectric constants using the Lyddane–Sachs–Teller relation. The static dielectric constants can be approximated by linear relationships between those of α-Ga2O3and α-Al2O3. The optical phonon modes and static dielectric constants will become useful for device design and free charge carrier characterization using optical techniques.

     
    more » « less
  3. X Ray Photoelectron Spectroscopy was used to measure valence band offsets for Al 2 O 3 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys over a wide range of Al contents, x, from 0.26–0.74, corresponding to a bandgap range from 5.8–7 eV. These alloys were grown by Pulsed Laser Deposition. The band alignments were type I (nested) at x <0.5, with valence band offsets 0.13 eV for x = 0.26 and x = 0.46. At higher Al contents, the band alignment was a staggered alignment, with valence band offsets of − 0.07 eV for x = 0.58 and −0.17 for x = 0.74, ie. negative valence band offsets in both cases. The conduction band offsets are also small at these high Al contents, being only 0.07 eV at x = 0.74. The wide bandgap of the α -(Al x Ga 1-x ) 2 O 3 alloys makes it difficult to find dielectrics with nested band alignments over the entire composition range. 
    more » « less
  4. Abstract

    The anisotropic dielectric functions (DF) of corundum structuredm-planeα-(AlxGa1−x)2O3thin films (up tox= 0.76) grown onm-plane sapphire substrate by metalorganic CVD have been investigated. IR and visible–UV spectroscopic ellipsometry yields the DFs, while X-ray diffraction revealed the lattice parameters (a,m,c), showing the samples are almost fully relaxed. Analysis of the IR DFs from 250 to 6000 cm−1by a complex Lorentz oscillator model yields the anisotropic IR active phononsEuandA2uand the shift towards higher wavenumbers with increasing Al content. Analyzing the UV DFs from 0.5 to 6.6 eV we find the change in the dielectric limitsεand the shift of the Γ-point transition energies with increasing Al content. This results in anisotropic bowing parameters forα-(AlxGa1−x)2O3ofb= 2.1 eV andb∣∣= 1.7 eV.

     
    more » « less
  5. In this work, we report a study of the temperature dependent pulsed current voltage and RF characterization of [Formula: see text]-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 hetero-structure FETs (HFETs) before and after silicon nitride (Si 3 N 4 ) passivation. Under sub-microsecond pulsing, a moderate DC-RF dispersion (current collapse) is observed before passivation in gate lag measurements, while no current collapse is observed in the drain lag measurements. The dispersion in the gate lag is possibly attributed to interface traps in the gate–drain access region. DC-RF dispersion did not show any strong dependence on the pulse widths. Temperature dependent RF measurements up to 250 °C do not show degradation in the cutoff frequencies. After Si 3 N 4 deposition at 350 °C, a shift of the threshold voltage is observed which changed the DC characteristics. However, the current collapse is eliminated; at 200 ns pulse widths, a 50% higher current is observed compared to the DC at high drain voltages. No current collapse is observed even at higher temperatures. RF performance of the passivated devices does not show degradation. These results show that ex situ deposited Si 3 N 4 is a potential candidate for passivation of [Formula: see text]-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 HFETs. 
    more » « less