skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: From Stochastic Planning to Marginal MAP
It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes two contributions in this context. The first is to provide an analysis of the recently developed SOGBOFA heuristic planning algorithm that was shown to be effective for problems with large factored state and action spaces. It is shown that SOGBOFA can be seen as a specialized inference algorithm that computes its solutions through a combination of a symbolic variant of belief propagation and gradient ascent. The second contribution is a new solver for Marginal MAP (MMAP) inference. We introduce a new reduction from MMAP to maximum expected utility problems which are suitable for the symbolic computation in SOGBOFA. This yields a novel algebraic gradient-based solver (AGS) for MMAP. An experimental evaluation illustrates the potential of AGS in solving difficult MMAP problems.  more » « less
Award ID(s):
2002393 1616280
PAR ID:
10146114
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Probabilistic circuits (PCs) such as sum-product networks efficiently represent large multi-variate probability distributions. They are preferred in practice over other probabilistic representations, such as Bayesian and Markov networks, because PCs can solve marginal inference (MAR) tasks in time that scales linearly in the size of the network. Unfortunately, the most probable explanation (MPE) task and its generalization, the marginal maximum-a-posteriori (MMAP) inference task remain NP-hard in these models. Inspired by the recent work on using neural networks for generating near-optimal solutions to optimization problems such as integer linear programming, we propose an approach that uses neural networks to approximate MMAP inference in PCs. The key idea in our approach is to approximate the cost of an assignment to the query variables using a continuous multilinear function and then use the latter as a loss function. The two main benefits of our new method are that it is self-supervised, and after the neural network is learned, it requires only linear time to output a solution. We evaluate our new approach on several benchmark datasets and show that it outperforms three competing linear time approximations: max-product inference, max-marginal inference, and sequential estimation, which are used in practice to solve MMAP tasks in PCs. 
    more » « less
  2. While Chain-of-Thought (CoT) prompting boosts Language Models’ (LM) performance on a gamut of complex reasoning tasks, the generated reasoning chain does not necessarily reflect how the model arrives at the answer (aka. faithfulness). We propose Faithful CoT, a reasoning framework involving two stages: Translation (Natural Language query → symbolic reasoning chain) and Problem Solving (reasoning chain → answer), using an LM and a deterministic solver respectively. This guarantees that the reasoning chain provides a faithful explanation of the final answer. Aside from interpretability, Faithful CoT also improves empirical performance: it outperforms standard CoT on 9 of 10 benchmarks from 4 diverse domains, with a relative accuracy gain of 6.3% on Math Word Problems (MWP), 3.4% on Planning, 5.5% on Multi-hop Question Answering (QA), and 21.4% on Relational Inference. Furthermore, with GPT-4 and Codex, it sets the new state-of-the-art few-shot performance on 7 datasets (with 95.0+ accuracy on 6 of them), showing a strong synergy between faithfulness and accuracy. 
    more » « less
  3. The paper introduces a new algorithm for planning in partially observable Markov decision processes (POMDP) based on the idea of aggregate simulation. The algorithm uses product distributions to approximate the belief state and shows how to build a representation graph of an approximate action-value function over belief space. The graph captures the result of simulating the model in aggregate under independence assumptions, giving a symbolic representation of the value function. The algorithm supports large observation spaces using sampling networks, a representation of the process of sampling values of observations, which is integrated into the graph representation. Following previous work in MDPs this approach enables action selection in POMDPs through gradient optimization over the graph representation. This approach complements recent algorithms for POMDPs which are based on particle representations of belief states and an explicit search for action selection. Our approach enables scaling to large factored action spaces in addition to large state spaces and observation spaces. An experimental evaluation demonstrates that the algorithm provides excellent performance relative to state of the art in large POMDP problems. 
    more » « less
  4. Effective symbolic evaluation is key to building scalable ver- ification and synthesis tools based on SMT solving. These tools use sym- bolic evaluators to reduce the semantics of all paths through a finite program to logical constraints, discharged with an SMT solver. Using an evaluator effectively requires tool developers to be able to identify and re- pair performance bottlenecks in code under all-path evaluation, a difficult task, even for experts. This paper presents a new method for repairing such bottlenecks automatically. The key idea is to formulate the symbolic performance repair problem as combinatorial search through a space of semantics-preserving transformations, or repairs, to find an equivalent program with minimal cost under symbolic evaluation. The key to real- izing this idea is (1) defining a small set of generic repairs that can be combined to fix common bottlenecks, and (2) searching for combinations of these repairs to find good solutions quickly and best ones eventually. Our technique, SymFix, contributes repairs based on deforestation and symbolic reflection, and an efficient algorithm that uses symbolic profil- ing to guide the search for fixes. To evaluate SymFix, we implement it for the Rosette solver-aided language and symbolic evaluator. Applying SymFix to 18 published verification and synthesis tools built in Rosette, we find that it automatically improves the performance of 12 tools by a factor of 1.1×–91.7×, and 4 of these fixes match or outperform expert- written repairs. SymFix also finds 5 fixes that were missed by experts. 
    more » « less
  5. In this paper, we propose an efficient and flexible algorithm to solve dynamic mean-field planning problems based on an accelerated proximal gradient method. Besides an easy-to-implement gradient descent step in this algorithm, a crucial projection step becomes solving an elliptic equation whose solution can be obtained by conventional methods efficiently. By induction on iterations used in the algorithm, we theoretically show that the proposed discrete solution converges to the underlying continuous solution as the grid becomes finer. Furthermore, we generalize our algorithm to mean-field game problems and accelerate it using multilevel and multigrid strategies. We conduct comprehensive numerical experiments to confirm the convergence analysis of the proposed algorithm, to show its efficiency and mass preservation property by comparing it with state-of-the-art methods, and to illustrate its flexibility for handling various mean-field variational problems. 
    more » « less