skip to main content


This content will become publicly available on November 1, 2024

Title: Faithful Chain-of-Thought Reasoning
While Chain-of-Thought (CoT) prompting boosts Language Models’ (LM) performance on a gamut of complex reasoning tasks, the generated reasoning chain does not necessarily reflect how the model arrives at the answer (aka. faithfulness). We propose Faithful CoT, a reasoning framework involving two stages: Translation (Natural Language query → symbolic reasoning chain) and Problem Solving (reasoning chain → answer), using an LM and a deterministic solver respectively. This guarantees that the reasoning chain provides a faithful explanation of the final answer. Aside from interpretability, Faithful CoT also improves empirical performance: it outperforms standard CoT on 9 of 10 benchmarks from 4 diverse domains, with a relative accuracy gain of 6.3% on Math Word Problems (MWP), 3.4% on Planning, 5.5% on Multi-hop Question Answering (QA), and 21.4% on Relational Inference. Furthermore, with GPT-4 and Codex, it sets the new state-of-the-art few-shot performance on 7 datasets (with 95.0+ accuracy on 6 of them), showing a strong synergy between faithfulness and accuracy.  more » « less
Award ID(s):
1928474
NSF-PAR ID:
10463284
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2023)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Answering open-domain questions requires world knowledge about in-context entities. As pre-trained Language Models (LMs) lack the power to store all required knowledge, external knowledge sources, such as knowledge graphs, are often used to augment LMs. In this work, we propose knOwledge REasOning empowered Language Model (OREOLM), which consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs to interact with a differentiable Knowledge Graph Reasoning module collaboratively. In this way, LM guides KG to walk towards the desired answer, while the retrieved knowledge improves LM. By adopting OREOLM to RoBERTa and T5, we show significant performance gain, achieving state-of-art results in the Closed-Book setting. The performance enhancement is mainly from the KG reasoning’s capacity to infer missing relational facts. In addition, OREOLM provides reasoning paths as rationales to interpret the model’s decision. 
    more » « less
  2. Recent years have witnessed the emergence of a variety of post-hoc interpretations that aim to uncover how natural language processing (NLP) models make predictions. Despite the surge of new interpretation methods, it remains an open problem how to define and quantitatively measure the faithfulness of interpretations, i.e., to what extent interpretations reflect the reasoning process by a model. We propose two new criteria, sensitivity and stability, that provide complementary notions of faithfulness to the existed removal-based criteria. Our results show that the conclusion for how faithful interpretations are could vary substantially based on different notions. Motivated by the desiderata of sensitivity and stability, we introduce a new class of interpretation methods that adopt techniques from adversarial robustness. Empirical results show that our proposed methods are effective under the new criteria and overcome limitations of gradient-based methods on removal-based criteria. Besides text classification, we also apply interpretation methods and metrics to dependency parsing. Our results shed light on understanding the diverse set of interpretations. 
    more » « less
  3. Generating a chain of thought (CoT) can increase large language model (LLM) performance on a wide range of tasks. Zero-shot CoT evaluations, however, have been conducted primarily on logical tasks (e.g. arithmetic, commonsense QA). In this paper, we perform a controlled evaluation of zero-shot CoT across two sensitive domains: harmful questions and stereotype benchmarks. We find that using zero-shot CoT reasoning in a prompt can significantly increase a model's likelihood to produce undesirable output. Without future advances in alignment or explicit mitigation instructions, zero-shot CoT should be avoided on tasks where models can make inferences about marginalized groups or harmful topics. 
    more » « less
  4. State-of-the-art industrial-level recommender system applications mostly adopt complicated model structures such as deep neural networks. While this helps with the model performance, the lack of system explainability caused by these nearly blackbox models also raises concerns and potentially weakens the users’ trust in the system. Existing work on explainable recommendation mostly focuses on designing interpretable model structures to generate model-intrinsic explanations. However, most of them have complex structures, and it is difficult to directly apply these designs onto existing recommendation applications due to the effectiveness and efficiency concerns. However, while there have been some studies on explaining recommendation models without knowing their internal structures (i.e., model-agnostic explanations), these methods have been criticized for not reflecting the actual reasoning process of the recommendation model or, in other words, faithfulness . How to develop model-agnostic explanation methods and evaluate them in terms of faithfulness is mostly unknown. In this work, we propose a reusable evaluation pipeline for model-agnostic explainable recommendation. Our pipeline evaluates the quality of model-agnostic explanation from the perspectives of faithfulness and scrutability. We further propose a model-agnostic explanation framework for recommendation and verify it with the proposed evaluation pipeline. Extensive experiments on public datasets demonstrate that our model-agnostic framework is able to generate explanations that are faithful to the recommendation model. We additionally provide quantitative and qualitative study to show that our explanation framework could enhance the scrutability of blackbox recommendation model. With proper modification, our evaluation pipeline and model-agnostic explanation framework could be easily migrated to existing applications. Through this work, we hope to encourage the community to focus more on faithfulness evaluation of explainable recommender systems. 
    more » « less
  5. null (Ed.)
    The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. Here we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph-based message passing. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions. 
    more » « less