skip to main content


Title: Evidence for a vestigial nematic state in the cuprate pseudogap phase
The CuO 2 antiferromagnetic insulator is transformed by hole-doping into an exotic quantum fluid usually referred to as the pseudogap (PG) phase. Its defining characteristic is a strong suppression of the electronic density-of-states D ( E ) for energies | E | < Δ * , where Δ * is the PG energy. Unanticipated broken-symmetry phases have been detected by a wide variety of techniques in the PG regime, most significantly a finite- Q density-wave (DW) state and a Q = 0 nematic (NE) state. Sublattice-phase-resolved imaging of electronic structure allows the doping and energy dependence of these distinct broken-symmetry states to be visualized simultaneously. Using this approach, we show that even though their reported ordering temperatures T DW and T NE are unrelated to each other, both the DW and NE states always exhibit their maximum spectral intensity at the same energy, and using independent measurements that this is the PG energy Δ * . Moreover, no new energy-gap opening coincides with the appearance of the DW state (which should theoretically open an energy gap on the Fermi surface), while the observed PG opening coincides with the appearance of the NE state (which should theoretically be incapable of opening a Fermi-surface gap). We demonstrate how this perplexing phenomenology of thermal transitions and energy-gap opening at the breaking of two highly distinct symmetries may be understood as the natural consequence of a vestigial nematic state within the pseudogap phase of Bi 2 Sr 2 CaCu 2 O 8 .  more » « less
Award ID(s):
1719875
NSF-PAR ID:
10146293
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
27
ISSN:
0027-8424
Page Range / eLocation ID:
13249 to 13254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic F e S e 1 − x S x superconductor. We observe two types of long-wavelength X Y symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at T S ( x ) , a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the X Y symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward T S ( x ) . The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration x c r ≈ 0.16 , while the pseudogap size decreases with the suppression of T S ( x ) . We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed. 
    more » « less
  2. Abstract An unidentified quantum fluid designated the pseudogap (PG) phase is produced by electron-density depletion in the CuO 2 antiferromagnetic insulator. Current theories suggest that the PG phase may be a pair density wave (PDW) state characterized by a spatially modulating density of electron pairs. Such a state should exhibit a periodically modulating energy gap $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) in real-space, and a characteristic quasiparticle scattering interference (QPI) signature $${\Lambda }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{q}}}}}})$$ Λ P ( q ) in wavevector space. By studying strongly underdoped Bi 2 Sr 2 CaDyCu 2 O 8 at hole-density ~0.08 in the superconductive phase, we detect the 8 a 0 -periodic $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) modulations signifying a PDW coexisting with superconductivity. Then, by visualizing the temperature dependence of this electronic structure from the superconducting into the pseudogap phase, we find the evolution of the scattering interference signature $$\Lambda ({{{{{\boldsymbol{q}}}}}})$$ Λ ( q ) that is predicted specifically for the temperature dependence of an 8 a 0 -periodic PDW. These observations are consistent with theory for the transition from a PDW state coexisting with d -wave superconductivity to a pure PDW state in the Bi 2 Sr 2 CaDyCu 2 O 8 pseudogap phase. 
    more » « less
  3. We present a valence transition model for electron- and hole-doped cuprates, within which there occurs a discrete jump in ionicity Cu2+ -> Cu1+ in both families upon doping, at or near optimal doping in the conventionally prepared electron-doped compounds and at the pseudogap phase transition in the hole-doped materials. In thin films of the T' compounds, the valence transition has occurred already in the undoped state. The phenomenology of the valence transition is closely related to that of the neutral-to-ionic transition in mixed-stack organic charge-transfer solids. Doped cuprates have negative charge-transfer gaps, just as rare-earth nickelates and BaBiO3. The unusually high ionization energy of the closed shell Cu1+ ion, taken together with the dopingdriven reduction in three-dimensional Madelung energy and gain in two-dimensional delocalization energy in the negative charge transfer gap state drives the transition in the cuprates. The combined effects of strong correlations and small d-p electron hoppings ensure that the systems behave as effective 1/2-filled Cu band with the closed shell electronically inactive O2- ions in the undoped state, and as correlated two-dimensional geometrically frustrated 1/4-filled oxygen hole band, now with electronically inactive closed-shell Cu1+ ions, in the doped state. The model thus gives microscopic justification for the two-fluid models suggested by many authors. The theory gives the simplest yet most comprehensive understanding of experiments in the normal states. The robust commensurate antiferromagnetism in the conventional T' crystals, the strong role of oxygen deficiency in driving superconductivity and charge carrier sign corresponding to holes at optimal doping are all manifestations of the same quantum state. In the hole-doped pseudogapped state, there occurs a biaxial commensurate period 4 charge density wave state consisting of O1- -Cu l(1+)-O1- spin singlets that coexists with broken rotational C-4 symmetry due to intraunit cell oxygen inequivalence. Finite domains of this broken symmetry state will exhibit twodimensional chirality and the polar Kerr effect. Superconductivity within the model results from a destabilization of the 1/4-filled band paired Wigner crystal [Phys. Rev. B 93, 165110 (2016) and ihid. 93, 205111 (2016)]. We posit that a similar valence transition, Ir4+ -> Ir3+, occurs upon electron doping Sr2IrO4. We make testable experimental predictions in cuprates including superoxygenated La2CuO4+delta and iridates. Finally, as indirect evidence for the valence bond theory of superconductivity proposed here, we note that there exist an unusually large number of unconventional superconductors that exhibit superconductivity proximate to exotic charge ordered states, whose band fillings are universally 1/4 or 3/4, exactly where the paired Wigner crystal is most stable. 
    more » « less
  4. Iron-chalcogenide superconductors FeSe1−xSxpossess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (μSR) measurements in FeSe1−xSxsuperconductors for0x0.22covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperatureTcfor all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-fieldμSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x>0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1−xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity.

     
    more » « less
  5. null (Ed.)
    The defining characteristic of hole-doped cuprates is d -wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d -symmetry form factor, pair density wave (PDW) state coexisting with d -wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states N r , E is predicted at the terminal BiO surface of Bi 2 Sr 2 CaCu 2 O 8 and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of N r , E , the modulations of the coherence peak energy Δ p r , and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space q - space . Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi 2 Sr 2 CaCu 2 O 8 does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p *, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p * ≈ 19% occurs due to disappearance of this PDW. 
    more » « less