skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast real-time time-dependent hybrid functional calculations with the parallel transport gauge and the adaptively compressed exchange formulation
Award ID(s):
1652330
PAR ID:
10146303
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computer Physics Communications
Volume:
240
Issue:
C
ISSN:
0010-4655
Page Range / eLocation ID:
21 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DTW calculates the similarity or alignment between two signals, subject to temporal warping. However, its computational complexity grows exponentially with the number of time-series. Although there have been algorithms developed that are linear in the number of time-series, they are generally quadratic in time-series length. The exception is generalized time warping (GTW), which has linear computational cost. Yet, it can only identify simple time warping functions. There is a need for a new fast, high-quality multisequence alignment algorithm. We introduce trainable time warping (TTW), whose complexity is linear in both the number and the length of time-series. TTW performs alignment in the continuoustime domain using a sinc convolutional kernel and a gradient-based optimization technique. We compare TTW and GTW on S5 UCR datasets in time-series averaging and classification. TTW outperforms GTW on 67.1% of the datasets for the averaging tasks, and 61.2% of the datasets for the classification tasks. 
    more » « less
  2. null (Ed.)
  3. In this paper, we report on our investigation of how current local time is reported accurately by devices connected to the internet. We describe the basic mechanisms for time management and focus on a critical but unstudied aspect of managing time on connected devices: the time zone database (TZDB). Our longitudinal analysis of the TZDB highlights how internet time has been managed by a loose confederation of contributors over the past 25 years. We drill down on details of the update process, update types and frequency, and anomalies related to TZDB updates. We find that 76% of TZDB updates include changes to the Daylight Saving Time (DST) rules, indicating that DST has a significant influence on internet-based time keeping. We also find that about 20% of updates were published within 15 days or less from the date of effect, indicating the potential for instability in the system. We also consider the security aspects of time management and identify potential vulnerabilities. We conclude with a set of proposals for enhancing TZDB management and reducing vulnerabilities in the system. 
    more » « less
  4. null (Ed.)
    Suppose that you are going to school and arrive at a bus stop. How long do you have to wait before the next bus arrives? Surprisingly, it is longer—possibly much longer—than what you might guess from looking at a bus schedule. This phenomenon, which is called the waiting-time paradox, has a purely mathematical origin. In this article, we explore the waiting-time paradox, explain why it occurs, and discuss some of its implications (beyond the possibility of being late for school). 
    more » « less