skip to main content


Title: Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using ecological niche modelling
The role of the environmental niche in fostering ecological divergence during adaptive radiation remains enigmatic. In this study, we examine the interplay between environmental niche divergence and conservatism in the context of adaptive radiation on oceanic islands, by characterizing the niche breadth of four Hawaiian arthropod radiations: Tetragnatha spiders (Tetragnathidae Latreille, 1804), Laupala crickets (Gryllidae Otte, 1994), a clade of Drosophila flies (Drosophilidae Fallén, 1823) and Nesosydne planthoppers (Delphacidae Kirkaldy, 1907). We assembled occurrence datasets for the four lineages, modelled their distributions and quantified niche overlap. All four groups occupy the islands in distinct ways, highlighting the contrasting axes of diversification for different lineages. Laupala and Nesosydne have opposite environmental niche extents (broad and narrow, respectively), whereas Tetragnatha and Drosophila share relatively intermediate tolerances. Temperature constrains the distributions of all four radiations. Tests of phylogenetic signal suggest that, for Tetragnatha and Drosophila, closely related species exhibit similar environmental niches; thus, diversification is associated with niche conservatism. Sister species comparisons also show that populations often retain similar environmental tolerances, although exceptions do occur. Results imply that diversification does not occur through ecological speciation; instead, adaptive radiation occurs largely within a single environment.  more » « less
Award ID(s):
1839598
PAR ID:
10146828
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biological journal of the Linnean Society
Volume:
12
ISSN:
1095-8312
Page Range / eLocation ID:
479-492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Evolutionary transitions between habitats have been catalysts for some of the most stunning examples of adaptive diversification, with novel niches and new resources providing ecological opportunity for such radiations. In aquatic animals, transitions from saltwater to freshwater habitats are rare, but occur often enough that in the Neotropics for example, marine-derived fishes contribute noticeably to regional ichthyofaunal diversity. Here, we investigate how morphology has evolved in a group of temperate fishes that contain a marine to freshwater transition: the sculpins (Percomorpha; Cottoidea). We devised a novel method for classifying dietary niche and relating functional aspects of prey to their predators. Coupled with functional measurements of the jaw apparatus in cottoids, we explored whether freshwater sculpins have fundamentally changed their niche after invading freshwater (niche lability) or if they retain a niche similar to their marine cousins (niche conservatism). Freshwater sculpins exhibit both phylogeographical and ecological signals of phylogenetic niche conservatism, meaning that regardless of habitat, sculpins fill similar niche roles in either saltwater or freshwater. Rather than competition guiding niche conservatism in freshwater cottoids, we argue that strong intrinsic constraints on morphological and ecological evolution are at play, contra to other studies of diversification in marine-derived freshwater fishes. However, several intertidal and subtidal sculpins as well as several pelagic freshwater species from Lake Baikal show remarkable departures from the typical sculpin bauplan. Our method of prey categorization provides an explicit, quantitative means of classifying dietary niche for macroevolutionary studies, rather than relying on somewhat arbitrary means used in previous literature. 
    more » « less
  2. Abstract Aim

    We studied the niche evolution and diversification modes in transisthmianAlpheusshrimps by examining the interplay between environmental niche divergence and conservatism in allopatric sister species. In a broader perspective, the current study analysed the evolution of climatic niche and the role of the environment in species diversification ofAlpheustransisthmian shrimp.

    Location

    Atlantic and Eastern‐Pacific oceans.

    Taxon

    Alpheusshrimps (Caridea: Alpheidae).

    Methods

    We assembled georeferenced occurrences for 33 species ofAlpheus(with 24 sister species) from a time‐calibrated molecular phylogeny. We modelled their ecological niches and assessed niche overlap through pairwise comparisons. Additionally, we performed phylogenetic reconstructions of the ancestral environmental niche, for each niche axis.

    Results

    Our results demonstrate that thermal tolerances, food availability and hydrodynamic forces were relevant environmental axes in evolutionary processes in transisthmian species ofAlpheus. Among the 528 paired comparisons, we found that most niches were divergent, including in 12 clades formed by pairs of sister species (in only two of these clades were the niches fully equivalent). Phylogenetic reconstructions of ancestral niches showed an initial niche conservatism in all axes, with divergences intensifying in the last 12 million years.

    Main Conclusions

    We found evidence that confirms the relevance of the environmental changes that occurred in the West Atlantic and East Pacific for niche evolution in transisthmianAlpheusspecies, as well as for the emergence of some lineages. Our findings provide evidence for different modes ofAlpheusspecies speciation in a period consistent with the closure of the Isthmus of Panama.

     
    more » « less
  3. Abstract

    The ecological and phenotypic diversity observed in oceanic island radiations presents an evolutionary paradox: a high level of genetic variation is typically required for diversification, but species colonizing a new island commonly suffer from founder effects. This reduction in population size leads to lower genetic diversity, which ultimately results in a reduction in the efficiency of natural selection. What then is the source of genetic variation which acts as the raw material for ecological and phenotypic diversification in oceanic archipelagos? Transposable elements (TEs) are mobile genetic elements that have been linked to the generation of genetic diversity, and evidence suggests that TE activity and accumulation along the genome can result from reductions in population size. Here, we use the Hawaiian spiny-leg spider radiation (Tetragnatha) to test whether TE accumulation increases due to demographic processes associated with island colonization. We sequenced and quantified TEs in 23 individuals representing 16 species from the spiny-leg radiation and four individuals from its sister radiation, the Hawaiian web-building Tetragnatha. Our results show that founder effects resulting from colonization of new islands have not resulted in TE accumulation over evolutionary time. Specifically, we found no evidence for an increase in abundance of specific TE superfamilies, nor an accumulation of ‘young TEs’ in lineages which have recently colonized a new island or are present in islands with active volcanoes. We also found that the DNA/hAT transposon superfamily is by far the most abundant TE superfamily in the Tetragnatha radiation. This work shows that there is no clear trend of increasing TE abundance for the spiny-leg radiation across the archipelago chronosequence, and TE accumulation is not affected by population oscillations associated with island colonization events. Therefore, despite their known role in the generation of genetic diversity, TE activity does not appear to be the mechanism explaining the evolutionary paradox of insular diversification in the Tetragnatha spiny-leg radiation.

     
    more » « less
  4. Cryptic species complexes consist of geographically confluent, closely related species that were once classified as a single species. The diversification mechanisms of cryptic species complexes often are mediated by environmental factors, which in some cases lead to ecological speciation. Niche-based distribution modeling can be an important tool in characterizing the extent of ecological divergence between species that may have resulted from environmentally driven speciation scenarios. We used climatic niche modeling to examine the degree of ecological divergence within the Paragalago zanzibaricus species complex in East Africa. We expected parapatrically distributed P. cocos and P. zanzibaricus to display a significant degree of climatic niche distinction and allopatrically distributed P. zanzibaricus and P. granti to exhibit a degree of niche conservatism. The extent of niche overlap between the three species was assessed by using a Niche Similarity Analysis (NSA) on bioclimatic values. Selected models for all three species exhibited good predictive ability, although the model for P. cocos was most optimal and appeared most consistent with its known range. NSA showed that P. cocos and P. zanzibaricus were statistically more similar than predicted from null distributional values. Results for NSA between the other two species pairings appear to be within the null distribution. The extent of niche overlap between all three species is consistent with the expectations of allopatric speciation processes. Future studies should examine alternative hypotheses for speciation within this group, including the role of sensory drive, interspecific competition, and the impact of Plio-Pleistocene climatic cycles. 
    more » « less
  5. Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes – species richness, phenotypic disparity, and ecological diversity – with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the ‘transporter’ hypothesis: introgression and the ancient origins of adaptive alleles, 2) the ‘signal complexity’ hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) ‘diversity begets diversity’, and 5) flexible stem/‘plasticity first’. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation. 
    more » « less