The paradox of the great speciators describes a contradictory biogeographic pattern exhibited by numerous avian lineages in Oceania. Specifically, these lineages display broad geographic distributions across the region, implying strong over-water dispersal capabilities; yet, they also display repeated genetic and phenotypic divergence—even between geographically proximate islands—implying poor inter-island dispersal capabilities. One group originally cited as evidence for this paradox is the dwarf kingfishers of the genus Ceyx. Here, using genomic sequencing and comprehensive geographic sampling of the monophyletic Ceyx radiation from northern Melanesia, we find repeated, deep genetic divergence and no evidence for gene flow between lineages found on geographically proximate islands, providing an exceptionally clear example of the paradox of the great speciators. A dated phylogenetic reconstruction suggests a significant burst of diversification occurred rapidly after reaching northern Melanesia, between 3.9 and 2.9 MYA. This pattern supports a shift in net diversification rate, concordant with the expectations of the “colonization cycle” hypothesis, which implies a historical shift in dispersiveness among great speciator lineages during the evolutionary past. Here, we present a formalized framework that explains how repeated founder effects and shifting selection pressures on highly dispersive genotypes are the only ultimate causes needed to generate the paradox of the great speciators. Within this framework, we emphasize that lineage-specific traits and island-specific abiotic factors will result in varying levels of selection pressure against dispersiveness, caused by varying proximate eco-evolutionary mechanisms. Overall, we highlight how understanding patterns of diversification in the Ceyx dwarf kingfishers helped us generate a cohesive framework that provides a rigorous mechanistic explanation for patterns concordant with the paradox of the great speciators and the repeated emergence of geographic radiations in island archipelagoes across the globe.
The ecological and phenotypic diversity observed in oceanic island radiations presents an evolutionary paradox: a high level of genetic variation is typically required for diversification, but species colonizing a new island commonly suffer from founder effects. This reduction in population size leads to lower genetic diversity, which ultimately results in a reduction in the efficiency of natural selection. What then is the source of genetic variation which acts as the raw material for ecological and phenotypic diversification in oceanic archipelagos? Transposable elements (TEs) are mobile genetic elements that have been linked to the generation of genetic diversity, and evidence suggests that TE activity and accumulation along the genome can result from reductions in population size. Here, we use the Hawaiian spiny-leg spider radiation (Tetragnatha) to test whether TE accumulation increases due to demographic processes associated with island colonization. We sequenced and quantified TEs in 23 individuals representing 16 species from the spiny-leg radiation and four individuals from its sister radiation, the Hawaiian web-building Tetragnatha. Our results show that founder effects resulting from colonization of new islands have not resulted in TE accumulation over evolutionary time. Specifically, we found no evidence for an increase in abundance of specific TE superfamilies, nor an accumulation of ‘young TEs’ in lineages which have recently colonized a new island or are present in islands with active volcanoes. We also found that the DNA/hAT transposon superfamily is by far the most abundant TE superfamily in the Tetragnatha radiation. This work shows that there is no clear trend of increasing TE abundance for the spiny-leg radiation across the archipelago chronosequence, and TE accumulation is not affected by population oscillations associated with island colonization events. Therefore, despite their known role in the generation of genetic diversity, TE activity does not appear to be the mechanism explaining the evolutionary paradox of insular diversification in the Tetragnatha spiny-leg radiation.
more » « less- Award ID(s):
- 1927510
- PAR ID:
- 10540746
- Publisher / Repository:
- Linnean Society
- Date Published:
- Journal Name:
- Evolutionary Journal of the Linnean Society
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2752-938X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The repeated evolution of phenotypes provides clear evidence for the role of natural selection in driving evolutionary change. However, the evolutionary origin of repeated phenotypes can be difficult to disentangle as it can arise from a combination of factors such as gene flow, shared ancestral polymorphisms or mutation. Here, we investigate the presence of these evolutionary processes in the Hawaiian spiny‐leg
Tetragnatha adaptive radiation, which includes four microhabitat‐specialists or ecomorphs, with different body pigmentation and size (Green, Large Brown, Maroon, and Small Brown). We investigated the evolutionary history of this radiation using 76 newly generated low‐coverage, whole‐genome resequenced samples, along with phylogenetic and population genomic tools. Considering the Green ecomorph as the ancestral state, our results suggest that the Green ecomorph likely re‐evolved once, the Large Brown and Maroon ecomorphs evolved twice and the Small Brown evolved three times. We found that the evolution of the Maroon and Small Brown ecomorphs likely involved ancestral hybridization events, while the Green and Large Brown ecomorphs likely evolved through novel mutations, despite a high rate of incomplete lineage sorting in the dataset. Our findings demonstrate that the repeated evolution of ecomorphs in the Hawaiian spiny‐legTetragnatha is influenced by multiple evolutionary processes. -
Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature’s most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropical
Anolis lizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade. -
The role of the environmental niche in fostering ecological divergence during adaptive radiation remains enigmatic. In this study, we examine the interplay between environmental niche divergence and conservatism in the context of adaptive radiation on oceanic islands, by characterizing the niche breadth of four Hawaiian arthropod radiations: Tetragnatha spiders (Tetragnathidae Latreille, 1804), Laupala crickets (Gryllidae Otte, 1994), a clade of Drosophila flies (Drosophilidae Fallén, 1823) and Nesosydne planthoppers (Delphacidae Kirkaldy, 1907). We assembled occurrence datasets for the four lineages, modelled their distributions and quantified niche overlap. All four groups occupy the islands in distinct ways, highlighting the contrasting axes of diversification for different lineages. Laupala and Nesosydne have opposite environmental niche extents (broad and narrow, respectively), whereas Tetragnatha and Drosophila share relatively intermediate tolerances. Temperature constrains the distributions of all four radiations. Tests of phylogenetic signal suggest that, for Tetragnatha and Drosophila, closely related species exhibit similar environmental niches; thus, diversification is associated with niche conservatism. Sister species comparisons also show that populations often retain similar environmental tolerances, although exceptions do occur. Results imply that diversification does not occur through ecological speciation; instead, adaptive radiation occurs largely within a single environment.more » « less
-
Abstract Island biodiversity has long fascinated biologists as it typically presents tractable systems for unpicking the eco‐evolutionary processes driving community assembly. In general, two recurring themes are of central theoretical interest. First, immigration, diversification, and extinction typically depend on island geographical properties (e.g., area, isolation, and age). Second, predictable ecological and evolutionary trajectories readily occur after colonization, such as the evolution of adaptive trait syndromes, trends toward specialization, adaptive radiation, and eventual ecological decline. Hypotheses such as the taxon cycle draw on several of these themes to posit particular constraints on colonization and subsequent eco‐evolutionary dynamics. However, it has been challenging to examine these integrated dynamics with traditional methods. Here, we combine phylogenomics, population genomics and phenomics, to unravel community assembly dynamics among
Pheidole (Hymenoptera, Formicidae) ants in the isolated Fijian archipelago. We uphold basic island biogeographic predictions that isolated islands accumulate diversity primarily through in situ evolution rather than dispersal, and population genomic support for taxon cycle predictions that endemic species have decreased dispersal ability and demography relative to regionally widespread taxa. However, rather than trending toward island syndromes, ecomorphological diversification in Fiji was intense, filling much of the genus‐level global morphospace. Furthermore, while most endemic species exhibit demographic decline and reduced dispersal, we show that the archipelago is not an evolutionary dead‐end. Rather, several endemic species show signatures of population and range expansion, including a successful colonization to the Cook islands. These results shed light on the processes shaping island biotas and refine our understanding of island biogeographic theory.