Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein–Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.
- Award ID(s):
- 1926105
- PAR ID:
- 10510335
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- International Journal of Primatology
- ISSN:
- 0164-0291
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche‐based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (
r 2 = .09), whereas the null model that incorporated both physiography and species richness did (r 2 = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide. -
The role of the environmental niche in fostering ecological divergence during adaptive radiation remains enigmatic. In this study, we examine the interplay between environmental niche divergence and conservatism in the context of adaptive radiation on oceanic islands, by characterizing the niche breadth of four Hawaiian arthropod radiations: Tetragnatha spiders (Tetragnathidae Latreille, 1804), Laupala crickets (Gryllidae Otte, 1994), a clade of Drosophila flies (Drosophilidae Fallén, 1823) and Nesosydne planthoppers (Delphacidae Kirkaldy, 1907). We assembled occurrence datasets for the four lineages, modelled their distributions and quantified niche overlap. All four groups occupy the islands in distinct ways, highlighting the contrasting axes of diversification for different lineages. Laupala and Nesosydne have opposite environmental niche extents (broad and narrow, respectively), whereas Tetragnatha and Drosophila share relatively intermediate tolerances. Temperature constrains the distributions of all four radiations. Tests of phylogenetic signal suggest that, for Tetragnatha and Drosophila, closely related species exhibit similar environmental niches; thus, diversification is associated with niche conservatism. Sister species comparisons also show that populations often retain similar environmental tolerances, although exceptions do occur. Results imply that diversification does not occur through ecological speciation; instead, adaptive radiation occurs largely within a single environment.more » « less
-
Abstract The spiny thicket of southwestern Madagascar represents an extreme and ancient landscape with extraordinary levels of biodiversity and endemism. Few hypotheses exist for explaining speciation in the region and few plant studies have explored hypotheses for species diversification. Here, we investigate three species in the endemic genus
Megistostegium (Malvaceae) to evaluate phylogeographic structure and explore the roles of climate, soil, and paleoclimate oscillations on population divergence and speciation throughout the region. We combine phylogenetic and phylogeographic inference of RADseq data with ecological niche modeling across space and time. Population structure is concurrent with major rivers in the region and we identify a new, potentially important biogeographic break coincident with several landscape features. Our data further suggests that niches occupied by species and populations differ substantially across their distribution. Paleodistribution modeling provide evidence that past climatic change could be responsible for the current distribution, population structure, and maintenance of species inMegistostegium . -
Abstract Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.