skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SuperPlots: Communicating reproducibility and variability in cell biology
P values and error bars help readers infer whether a reported difference would likely recur, with the sample size n used for statistical tests representing biological replicates, independent measurements of the population from separate experiments. We provide examples and practical tutorials for creating figures that communicate both the cell-level variability and the experimental reproducibility.  more » « less
Award ID(s):
1827257
PAR ID:
10146833
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.1083
Date Published:
Journal Name:
Journal of Cell Biology
Volume:
219
Issue:
6
ISSN:
0021-9525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For domains in R d \mathbb {R}^d , d ≥ 2 d\geq 2 , we prove universal upper and lower bounds on the product of the bottom of the spectrum for the Laplacian to the power p > 0 p>0 and the supremum over all starting points of the p p -moments of the exit time of Brownian motion. It is shown that the lower bound is sharp for integer values of p p and that for p ≥ 1 p \geq 1 , the upper bound is asymptotically sharp as d → ∞ d\to \infty . For all p > 0 p>0 , we prove the existence of an extremal domain among the class of domains that are convex and symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube is extremal. 
    more » « less
  2. Abstract In this paper, we examine the locality condition for non‐splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that is an abstract elementary class satisfyingthe joint embedding and amalgamation properties with no maximal model of cardinality ,stability in ,,continuity for (i.e., if and is a limit model witnessed by for some limit ordinal and there exists so that does not ‐split over for all , then does not ‐split over ). Then for and limit ordinals both with cofinality , if satisfies symmetry for (or just ‐symmetry), then, for any and that are and ‐limit models over , respectively, we have that and are isomorphic over . Note that no tameness is assumed. 
    more » « less
  3. Abstract Federal and state land agencies lack diversity at the natural resource manager level, in turn limiting the agencies' capacity for creative problem solving needed for complex and wicked environmental problems. Diverse representation is imperative to increase public support and trust in natural resource management.We used an online survey method to examine the relationship and experiences between independent demographic variables (e.g. gender, ethnicity and years worked in natural resources) and two dependent variables: (1) perceived public support and (2) sense of belonging for resource management professionals in the Pacific Northwest, USA.We find in general, that gender is associated with how one progresses through a career in natural resource management. As years in natural resource management increases, sense of belonging decreases for women and remains constant for men. Similarly, as years in natural resource management increases, perceived public support increases for men and remains constant for women.Given that ample past research suggests strong links between sustainable management and diverse perspectives, this study has implications for addressing our current and future natural resource management challenges. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. {"Abstract":["This data set contains all classifications that the Gravity Spy Machine Learning model for LIGO glitches from the first three observing runs (O1, O2 and O3, where O3 is split into O3a and O3b). Gravity Spy classified all noise events identified by the Omicron trigger pipeline in which Omicron identified that the signal-to-noise ratio was above 7.5 and the peak frequency of the noise event was between 10 Hz and 2048 Hz. To classify noise events, Gravity Spy made Omega scans of every glitch consisting of 4 different durations, which helps capture the morphology of noise events that are both short and long in duration.<\/p>\n\nThere are 22 classes used for O1 and O2 data (including No_Glitch and None_of_the_Above), while there are two additional classes used to classify O3 data.<\/p>\n\nFor O1 and O2, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, Chirp, Extremely_Loud, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle<\/p>\n\nFor O3, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, Blip_Low_Frequency<\/strong>, Chirp, Extremely_Loud, Fast_Scattering<\/strong>, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle<\/p>\n\nIf you would like to download the Omega scans associated with each glitch, then you can use the gravitational-wave data-analysis tool GWpy. If you would like to use this tool, please install anaconda if you have not already and create a virtual environment using the following command<\/p>\n\n```conda create --name gravityspy-py38 -c conda-forge python=3.8 gwpy pandas psycopg2 sqlalchemy```<\/p>\n\nAfter downloading one of the CSV files for a specific era and interferometer, please run the following Python script if you would like to download the data associated with the metadata in the CSV file. We recommend not trying to download too many images at one time. For example, the script below will read data on Hanford glitches from O2 that were classified by Gravity Spy and filter for only glitches that were labelled as Blips with 90% confidence or higher, and then download the first 4 rows of the filtered table.<\/p>\n\n```<\/p>\n\nfrom gwpy.table import GravitySpyTable<\/p>\n\nH1_O2 = GravitySpyTable.read('H1_O2.csv')<\/p>\n\nH1_O2[(H1_O2["ml_label"] == "Blip") & (H1_O2["ml_confidence"] > 0.9)]<\/p>\n\nH1_O2[0:4].download(nproc=1)<\/p>\n\n```<\/p>\n\nEach of the columns in the CSV files are taken from various different inputs: <\/p>\n\n[\u2018event_time\u2019, \u2018ifo\u2019, \u2018peak_time\u2019, \u2018peak_time_ns\u2019, \u2018start_time\u2019, \u2018start_time_ns\u2019, \u2018duration\u2019, \u2018peak_frequency\u2019, \u2018central_freq\u2019, \u2018bandwidth\u2019, \u2018channel\u2019, \u2018amplitude\u2019, \u2018snr\u2019, \u2018q_value\u2019] contain metadata about the signal from the Omicron pipeline. <\/p>\n\n[\u2018gravityspy_id\u2019] is the unique identifier for each glitch in the dataset. <\/p>\n\n[\u20181400Ripples\u2019, \u20181080Lines\u2019, \u2018Air_Compressor\u2019, \u2018Blip\u2019, \u2018Chirp\u2019, \u2018Extremely_Loud\u2019, \u2018Helix\u2019, \u2018Koi_Fish\u2019, \u2018Light_Modulation\u2019, \u2018Low_Frequency_Burst\u2019, \u2018Low_Frequency_Lines\u2019, \u2018No_Glitch\u2019, \u2018None_of_the_Above\u2019, \u2018Paired_Doves\u2019, \u2018Power_Line\u2019, \u2018Repeating_Blips\u2019, \u2018Scattered_Light\u2019, \u2018Scratchy\u2019, \u2018Tomte\u2019, \u2018Violin_Mode\u2019, \u2018Wandering_Line\u2019, \u2018Whistle\u2019] contain the machine learning confidence for a glitch being in a particular Gravity Spy class (the confidence in all these columns should sum to unity). <\/p>\n\n[\u2018ml_label\u2019, \u2018ml_confidence\u2019] provide the machine-learning predicted label for each glitch, and the machine learning confidence in its classification. <\/p>\n\n[\u2018url1\u2019, \u2018url2\u2019, \u2018url3\u2019, \u2018url4\u2019] are the links to the publicly-available Omega scans for each glitch. \u2018url1\u2019 shows the glitch for a duration of 0.5 seconds, \u2018url2\u2019 for 1 seconds, \u2018url3\u2019 for 2 seconds, and \u2018url4\u2019 for 4 seconds.<\/p>\n\n```<\/p>\n\nFor the most recently uploaded training set used in Gravity Spy machine learning algorithms, please see Gravity Spy Training Set on Zenodo.<\/p>\n\nFor detailed information on the training set used for the original Gravity Spy machine learning paper, please see Machine learning for Gravity Spy: Glitch classification and dataset on Zenodo. <\/p>"]} 
    more » « less
  5. The data provided here accompany the publication "Drought Characterization with GPS: Insights into Groundwater and Reservoir Storage in California" [Young et al., (2024)] which is currently under review with Water Resources Research. (as of 28 May 2024)Please refer to the manuscript and its supplemental materials for full details. (A link will be appended following publication)File formatting information is listed below, followed by a sub-section of the text describing the Geodetic Drought Index Calculation. The longitude, latitude, and label for grid points are provided in the file "loading_grid_lon_lat".Time series for each Geodetic Drought Index (GDI) time scale are provided within "GDI_time_series.zip".The included time scales are for 00- (daily), 1-, 3-, 6-, 12- 18- 24-, 36-, and 48-month GDI solutions.Files are formatted following...Title: "grid point label L****"_"time scale"_monthFile Format: ["decimal date" "GDI value"]Gridded, epoch-by-epoch, solutions for each time scale are provided within "GDI_grids.zip".Files are formatted following...Title: GDI_"decimal date"_"time scale"_monthFile Format: ["longitude" "latitude" "GDI value" "grid point label L****"]2.2 GEODETIC DROUGHT INDEX CALCULATION We develop the GDI following Vicente-Serrano et al. (2010) and Tang et al. (2023), such that the GDI mimics the derivation of the SPEI, and utilize the log-logistic distribution (further details below). While we apply hydrologic load estimates derived from GPS displacements as the input for this GDI (Figure 1a-d), we note that alternate geodetic drought indices could be derived using other types of geodetic observations, such as InSAR, gravity, strain, or a combination thereof. Therefore, the GDI is a generalizable drought index framework. A key benefit of the SPEI is that it is a multi-scale index, allowing the identification of droughts which occur across different time scales. For example, flash droughts (Otkin et al., 2018), which may develop over the period of a few weeks, and persistent droughts (>18 months), may not be observed or fully quantified in a uni-scale drought index framework. However, by adopting a multi-scale approach these signals can be better identified (Vicente-Serrano et al., 2010). Similarly, in the case of this GPS-based GDI, hydrologic drought signals are expected to develop at time scales that are both characteristic to the drought, as well as the source of the load variation (i.e., groundwater versus surface water and their respective drainage basin/aquifer characteristics). Thus, to test a range of time scales, the TWS time series are summarized with a retrospective rolling average window of D (daily with no averaging), 1, 3, 6, 12, 18, 24, 36, and 48-months width (where one month equals 30.44 days). From these time-scale averaged time series, representative compilation window load distributions are identified for each epoch. The compilation window distributions include all dates that range ±15 days from the epoch in question per year. This allows a characterization of the estimated loads for each day relative to all past/future loads near that day, in order to bolster the sample size and provide more robust parametric estimates [similar to Ford et al., (2016)]; this is a key difference between our GDI derivation and that presented by Tang et al. (2023). Figure 1d illustrates the representative distribution for 01 December of each year at the grid cell co-located with GPS station P349 for the daily TWS solution. Here all epochs between between 16 November and 16 December of each year (red dots), are compiled to form the distribution presented in Figure 1e. This approach allows inter-annual variability in the phase and amplitude of the signal to be retained (which is largely driven by variation in the hydrologic cycle), while removing the primary annual and semi-annual signals. Solutions converge for compilation windows >±5 days, and show a minor increase in scatter of the GDI time series for windows of ±3-4 days (below which instability becomes more prevalent). To ensure robust characterization of drought characteristics, we opt for an extended ±15-day compilation window. While Tang et al. (2023) found the log-logistic distribution to be unstable and opted for a normal distribution, we find that, by using the extended compiled distribution, the solutions are stable with negligible differences compared to the use of a normal distribution. Thus, to remain aligned with the SPEI solution, we retain the three-parameter log-logistic distribution to characterize the anomalies. Probability weighted moments for the log-logistic distribution are calculated following Singh et al., (1993) and Vicente-Serrano et al., (2010). The individual moments are calculated following Equation 3. These are then used to calculate the L-moments for shape (), scale (), and location () of the three-parameter log-logistic distribution (Equations 4 – 6). The probability density function (PDF) and the cumulative distribution function (CDF) are then calculated following Equations 7 and 8, respectively. The inverse Gaussian function is used to transform the CDF from estimates of the parametric sample quantiles to standard normal index values that represent the magnitude of the standardized anomaly. Here, positive/negative values represent greater/lower than normal hydrologic storage. Thus, an index value of -1 indicates that the estimated load is approximately one standard deviation dryer than the expected average load on that epoch. *Equations can be found in the main text. 
    more » « less