skip to main content


Title: Predictive design of polymer molecular weight distributions in anionic polymerization
Molecular weight distributions (MWD) have a substantial impact on a diverse set of polymer physical and rheological properties, from processability and stiffness to many aspects of block copolymer microphase behavior. The precise MWD compositions of these polymers can be modularly controlled through temporal initiation in anionic polymerizations by metered addition of a discrete initiating species. With the technique described in this work, we identify initiator addition profiles through theoretical modeling which can be used to prepare any desired arbitrary MWD. This kinetic model reproduces experimental MWDs with high fidelity. Our modeling strategy incorporates a detailed kinetic description of polymer initiation and propagation, including the association and dissociation equilibria of the living polymer chain ends. We simplify the kinetic model by incorporating the aggregation phenomena into an effective propagation rate constant k p , allowing it to vary with the polymer chain length ( i ). Importantly, this model also yields the ability to predict MWDs at any arbitrary value of monomer conversion during the polymerization. Lastly, we simulate MWDs for a variety of new, yet unmeasured, initiator addition profiles, demonstrating the predictability of this approach.  more » « less
Award ID(s):
1719875
NSF-PAR ID:
10147064
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
11
Issue:
2
ISSN:
1759-9954
Page Range / eLocation ID:
326 to 336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The properties of a polymer are known to be intrinsically related to its molecular weight distribution (MWD); however, previous methodologies of MWD control do not use a design and result in arbitrary shaped MWDs. Here we report a precise design to synthesis protocol for producing a targeted MWD design with a simple to use, and chemistry agnostic computer-controlled tubular flow reactor. To support the development of this protocol, we constructed general reactor design rules by combining fluid mechanical principles, polymerization kinetics, and experiments. The ring opening polymerization of lactide, the anionic polymerization of styrene, and the ring opening metathesis polymerization are used as model polymerizations to develop the reactor design rules and synthesize MWD profiles. The derivation of a mathematical model enables the quantitative prediction of the experimental results, and this model provides a tool to explore the limits of any MWD design protocol.

     
    more » « less
  2. ABSTRACT

    The stability of nonpatterned and nanopatterned strong polyelectrolyte brushes (PEBs) is studied as a function of both brush character and the properties of a contacting liquid. High‐molecular‐weight PEBs of poly(4‐methyl vinylpyridinium iodide) (PMeVP) are synthesized using surface‐initiated radical‐chain polymerization. Nanopatterned brushes (NPBs) line with pattern sizes ranging from 50 to 200 nm are generated by patterning the initiator layer using deep‐ultraviolet photolithography followed by brush growth initiated from the patterned layer. Homogeneous PEBs with different degrees of charging and grafting densities are exposed to water and salt solutions with different temperatures for different periods. The degradation is monitored through dry‐state ellipsometry and atomic force microscopy measurements. Enhanced degrafting for more strongly swollen polymer brushes can be observed in agreement with an “entropic spring” model. Based on the results of the nonpatterned brushes, the NPBs are exposed to water at different temperatures and external salt content for varying periods of time. Counterintuitively, the NPBs show increased degrafting for smaller patterns, which is attributed to different polymer chain dynamics for nanobrushes and microbrushes. We investigate the influence of thermodynamic and kinetic parameters on the stability of (nanopatterned) PEBs and discuss the role of entanglements and formation of complexes in such films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1283–1295

     
    more » « less
  3. Abstract

    Biobased poly(γ-methyl-α-methylene-γ-butyrolactone) (PMMBL), an acrylic polymer bearing a cyclic lactone ring, has attracted increasing interest because it not only is biorenewable but also exhibits superior properties to petroleum-based linear analog poly(methyl methacrylate) (PMMA). However, such property enhancement has been limited to resistance to heat and solvent, and mechanically both types of polymers are equally brittle. Here we report the expeditious synthesis of well-defined PMMBL-based ABA tri-block copolymers (tri-BCPs)—enabled by dual-initiating and living frustrated Lewis pairs (FLPs)—which are thermoplastic elastomers showing much superior mechanical properties, especially at high working temperatures (80–130 °C), to those of PMMA-based tri-BCPs. The FLPs consist of a bulky organoaluminum Lewis acid and a series of newly designed bis(imino)phosphine superbases bridged by an alkyl linker, which promote living polymerization of MMBL. Uniquely, such bisphosphine superbases initiate the chain growth from both P-sites concurrently, enabling the accelerated synthesis of tri-BCPs in a one-pot, two-step procedure. The results from mechanistic studies, including the single crystal structure of the dually initiated active species, detailed polymerizations, and kinetic studies confirm the livingness of the polymerization and support the proposed polymerization mechanism featuring the dual initiation and subsequent chain growth from both P-sites of the superbase di-initiator.

     
    more » « less
  4. Abstract

    The functionalization of poly(propylene carbonate) (PPC) by means of both free radical and esterification grafting of Maleic anhydride (MAH) aided by a peroxide is simulated by means of a kinetic model. The amount of MAH grafted (Ag) measured from batch mixer trials shows good agreement with the simulated results. Sensitivity analysis of the different rate constants shows that peroxide decomposition is the factor that drives the reaction, meaning that the choice of initiator affects greatly the reaction conversion. The next most dominant reaction is the chain ends esterification. There is a competing effect between chain initiation and side reactions, however, chain initiation is slightly more dominant than the latter. It is also found that higher content of peroxide induces higherAg. The amount of MAH has a lower impact onAgat low peroxide concentration; however, it becomes more influential in the presence of more peroxide.

     
    more » « less
  5. ABSTRACT

    Cellulose‐based polymer brushes with variable grafting densities and low dispersity were synthesized by grafting poly(n‐butyl acrylate) (PBA) side chains from cellulose‐derived backbones via ATRP. Esterification of commercially available cellulose acetate with 2‐bromoisobutyryl bromide (2‐BiBB) in NMP provided cellulose‐based macroinitiators averaging one initiation site per double glucose unit. ATRP macroinitiators averaging up to 6 initiation sites per repeating double glucose unit were prepared by acylation of microcrystalline cellulose (MCC) in LiCl/DMAc solvent system with 2‐BiBB. A series of linear macroinitiators with narrow MWD were obtained by fractional precipitation process. The content of initiating sites was determined by elemental analysis. (Meth)acrylate side chains were then grafted from the cellulose‐based macroinitiators. The prepared cellulose‐based polymer brushes showed tunable degradation rates dependent on grafting density of the brush, following two different degradation pathways, either cleavage of the main chain or detachment of the side chains. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 2426–2435

     
    more » « less