As technology scales, Network-on-Chips (NoCs), currently being used for on-chip communication in manycore architectures, face several problems including high network latency, excessive power consumption, and low reliability. Simultaneously addressing these problems is proving to be difficult due to the explosion of the design space and the complexity of handling many trade-offs. In this paper, we propose IntelliNoC, an intelligent NoC design framework which introduces architectural innovations and uses reinforcement learning to manage the design complexity and simultaneously optimize performance, energy-efficiency, and reliability in a holistic manner. IntelliNoC integrates three NoC architectural techniques: (1) multifunction adaptive channels (MFACs) to improve energy-efficiency; (2) adaptive error detection/correction and re-transmission control to enhance reliability; and (3) a stress-relaxing bypass feature which dynamically powers off NoC components to prevent overheating and fatigue. To handle the complex dynamic interactions induced by these techniques, we train a dynamic control policy using Q-learning, with the goal of providing improved fault-tolerance and performance while reducing power consumption and area overhead. Simulation using PARSEC benchmarks shows that our proposed IntelliNoC design improves energy-efficiency by 67% and mean-time-to-failure (MTTF) by 77%, and decreases end-to-end packet latency by 32% and area requirements by 25% over baseline NoC architecture.
more »
« less
CURE: A High-Performance, Low-Power, and Reliable Network-on-Chip Design Using Reinforcement Learning
We propose CURE, a deep reinforcement learning (DRL)-based NoC design framework that simultaneously reduces network latency, improves energy-efficiency, and tolerates transient errors and permanent faults. CURE has several architectural innovations and a DRL-based hardware controller to manage design complexity and optimize trade-offs. First, in CURE, we propose reversible multi-function adaptive channels (RMCs) to reduce NoC power consumption and network latency. Second, we implement a new fault-secure adaptive error correction hardware in each router to enhance reliability for both transient errors and permanent faults. Third, we propose a router power-gating and bypass design that powers off NoC components to reduce power and extend chip lifespan. Further, for the complex dynamic interactions of these techniques, we propose using DRL to train a proactive control policy to provide improved fault-tolerance, reduced power consumption, and improved performance. Simulation using the PARSEC benchmark shows that CURE reduces end-to-end packet latency by 39%, improves energy efficiency by 92%, and lowers static and dynamic power consumption by 24% and 38%, respectively, over conventional solutions. Using mean-time-to-failure, we show that CURE is 7.7x more reliable than the conventional NoC design.
more »
« less
- PAR ID:
- 10147076
- Date Published:
- Journal Name:
- IEEE Transactions on Parallel and Distributed Systems
- ISSN:
- 1045-9219
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)System-on-Chips (SoCs) are designed using different Intellectual Property (IP) blocks from multiple third-party vendors to reduce design cost while meeting aggressive time-to-market constraints. Designing trustworthy SoCs need to address the increasing concerns related to supply-chain security vulnerabilities. Malicious implants on IPs, such as Hardware Trojans (HTs) are one of the significant security threats in designing trustworthy SoCs. It is a major challenge to detect Trojans in complex multi-processor SoCs using conventional pre- and post-silicon validation methodologies. Packet-based Network-on-Chip (NoC) is a widely used solution for on-chip communication between IPs in complex SoCs. The focus of this paper is to enable trusted NoC communication in the presence of potentially untrusted IPs. This paper makes three key contributions. (1) We model an HT in NoC router that activates misrouting of the packets to initiate denial of service, delay of service, and injection suppression. (2) We propose a dynamic shielding technique that isolates the identified HT infected IP. (3) We present a secure routing algorithm to bypass the HT infected NoC router. Experimental results on HT infected NoC demonstrate that the proposed method reduces effective average packet latency by 38% in real benchmarks and 48% in synthetic traffic patterns. Our method also increases throughput and reduces effective average deflected packet latency by 62% in real benchmarks and 97% in synthetic traffic patterns.more » « less
-
null (Ed.)Machine learning applied to architecture design presents a promising opportunity with broad applications. Recent deep reinforcement learning (DRL) techniques, in particular, enable efficient exploration in vast design spaces where conventional design strategies may be inadequate. This paper proposes a novel deep reinforcement framework, taking routerless networks-on-chip (NoC) as an evaluation case study. The new framework successfully resolves problems with prior design approaches, which are either unreliable due to random searches or inflexible due to severe design space restrictions. The framework learns (near-)optimal loop placement for routerless NoCs with various design constraints. A deep neural network is developed using parallel threads that efficiently explore the immense routerless NoC design space with a Monte Carlo search tree. Experimental results show that, compared with conventional mesh, the proposed deep reinforcement learning (DRL) routerless design achieves a 3.25x increase in throughput, 1.6x reduction in packet latency, and 5x reduction in power. Compared with the state-of-the-art routerless NoC, DRL achieves a 1.47x increase in throughput, 1.18x reduction in packet latency, 1.14x reduction in average hop count, and 6.3% lower power consumption.more » « less
-
Network-on-Chips (NoCs) have emerged as the standard on-chip communication fabrics for multi/many core systems and system on chips. However, as the number of cores on chip increases, so does power consumption. Recent studies have shown that NoC power consumption can reach up to 40% of the overall chip power. Considerable research efforts have been deployed to significantly reduce NoC power consumption. In this paper, we build on approximate computing techniques and propose an approximate communication methodology called DEC-NoC for reducing NoC power consumption. The proposed DEC-NoC leverages applications' error tolerance and dynamically reduces the amount of error checking and correction in packet transmission, which results in a significant reduction in the number of retransmitted packets. The reduction in packet retransmission results in reduced power consumption. Our cycle accurate simulation using PARSEC benchmark suites shows that DEC-NoC achieves up to 56% latency reduction and up to 58% dynamic power reduction compared to NoC architectures with conventional error control techniques.more » « less
-
The design space for energy-efficient Network-on-Chips (NoCs) has expanded significantly comprising a number of techniques. The simultaneous application of these techniques to yield maximum energy efficiency requires the monitoring of a large number of system parameters which often results in substantial engineering efforts and complicated control policies. This motivates us to explore the use of reinforcement learning (RL) approach that automatically learns an optimal control policy to improve NoC energy efficiency. First, we deploy power-gating (PG) and dynamic voltage and frequency scaling (DVFS) to simultaneously reduce both static and dynamic power. Second, we use RL to automatically explore the dynamic interactions among PG, DVFS, and system parameters, learn the critical system parameters contained in the router and cache, and eventually evolve optimal per-router control policies that significantly improve energy efficiency. Moreover, we introduce an artificial neural network (ANN) to efficiently implement the large state-action table required by RL. Simulation results using PARSEC benchmark show that the proposed RL approach improves power consumption by 26%, while improving system performance by 7%, as compared to a combined PG and DVFS design without RL. Additionally, the ANN design yields 67% area reduction, as compared to a conventional RL implementation.more » « less