skip to main content

Title: CURE: A High-Performance, Low-Power, and Reliable Network-on-Chip Design Using Reinforcement Learning
We propose CURE, a deep reinforcement learning (DRL)-based NoC design framework that simultaneously reduces network latency, improves energy-efficiency, and tolerates transient errors and permanent faults. CURE has several architectural innovations and a DRL-based hardware controller to manage design complexity and optimize trade-offs. First, in CURE, we propose reversible multi-function adaptive channels (RMCs) to reduce NoC power consumption and network latency. Second, we implement a new fault-secure adaptive error correction hardware in each router to enhance reliability for both transient errors and permanent faults. Third, we propose a router power-gating and bypass design that powers off NoC components to reduce power and extend chip lifespan. Further, for the complex dynamic interactions of these techniques, we propose using DRL to train a proactive control policy to provide improved fault-tolerance, reduced power consumption, and improved performance. Simulation using the PARSEC benchmark shows that CURE reduces end-to-end packet latency by 39%, improves energy efficiency by 92%, and lowers static and dynamic power consumption by 24% and 38%, respectively, over conventional solutions. Using mean-time-to-failure, we show that CURE is 7.7x more reliable than the conventional NoC design.  more » « less
Award ID(s):
1812495 1702980
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Transactions on Parallel and Distributed Systems
Page Range / eLocation ID:
1 to 1
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As technology scales, Network-on-Chips (NoCs), currently being used for on-chip communication in manycore architectures, face several problems including high network latency, excessive power consumption, and low reliability. Simultaneously addressing these problems is proving to be difficult due to the explosion of the design space and the complexity of handling many trade-offs. In this paper, we propose IntelliNoC, an intelligent NoC design framework which introduces architectural innovations and uses reinforcement learning to manage the design complexity and simultaneously optimize performance, energy-efficiency, and reliability in a holistic manner. IntelliNoC integrates three NoC architectural techniques: (1) multifunction adaptive channels (MFACs) to improve energy-efficiency; (2) adaptive error detection/correction and re-transmission control to enhance reliability; and (3) a stress-relaxing bypass feature which dynamically powers off NoC components to prevent overheating and fatigue. To handle the complex dynamic interactions induced by these techniques, we train a dynamic control policy using Q-learning, with the goal of providing improved fault-tolerance and performance while reducing power consumption and area overhead. Simulation using PARSEC benchmarks shows that our proposed IntelliNoC design improves energy-efficiency by 67% and mean-time-to-failure (MTTF) by 77%, and decreases end-to-end packet latency by 32% and area requirements by 25% over baseline NoC architecture. 
    more » « less
  2. null (Ed.)
    System-on-Chips (SoCs) are designed using different Intellectual Property (IP) blocks from multiple third-party vendors to reduce design cost while meeting aggressive time-to-market constraints. Designing trustworthy SoCs need to address the increasing concerns related to supply-chain security vulnerabilities. Malicious implants on IPs, such as Hardware Trojans (HTs) are one of the significant security threats in designing trustworthy SoCs. It is a major challenge to detect Trojans in complex multi-processor SoCs using conventional pre- and post-silicon validation methodologies. Packet-based Network-on-Chip (NoC) is a widely used solution for on-chip communication between IPs in complex SoCs. The focus of this paper is to enable trusted NoC communication in the presence of potentially untrusted IPs. This paper makes three key contributions. (1) We model an HT in NoC router that activates misrouting of the packets to initiate denial of service, delay of service, and injection suppression. (2) We propose a dynamic shielding technique that isolates the identified HT infected IP. (3) We present a secure routing algorithm to bypass the HT infected NoC router. Experimental results on HT infected NoC demonstrate that the proposed method reduces effective average packet latency by 38% in real benchmarks and 48% in synthetic traffic patterns. Our method also increases throughput and reduces effective average deflected packet latency by 62% in real benchmarks and 97% in synthetic traffic patterns. 
    more » « less
  3. The design space for energy-efficient Network-on-Chips (NoCs) has expanded significantly comprising a number of techniques. The simultaneous application of these techniques to yield maximum energy efficiency requires the monitoring of a large number of system parameters which often results in substantial engineering efforts and complicated control policies. This motivates us to explore the use of reinforcement learning (RL) approach that automatically learns an optimal control policy to improve NoC energy efficiency. First, we deploy power-gating (PG) and dynamic voltage and frequency scaling (DVFS) to simultaneously reduce both static and dynamic power. Second, we use RL to automatically explore the dynamic interactions among PG, DVFS, and system parameters, learn the critical system parameters contained in the router and cache, and eventually evolve optimal per-router control policies that significantly improve energy efficiency. Moreover, we introduce an artificial neural network (ANN) to efficiently implement the large state-action table required by RL. Simulation results using PARSEC benchmark show that the proposed RL approach improves power consumption by 26%, while improving system performance by 7%, as compared to a combined PG and DVFS design without RL. Additionally, the ANN design yields 67% area reduction, as compared to a conventional RL implementation. 
    more » « less
  4. The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces network latency and power consumption by 39% and 30%, respectively, as compared to state-of-the-art security designs. 
    more » « less
  5. Network-on-Chips (NoCs) have emerged as the standard on-chip communication fabrics for multi/many core systems and system on chips. However, as the number of cores on chip increases, so does power consumption. Recent studies have shown that NoC power consumption can reach up to 40% of the overall chip power. Considerable research efforts have been deployed to significantly reduce NoC power consumption. In this paper, we build on approximate computing techniques and propose an approximate communication methodology called DEC-NoC for reducing NoC power consumption. The proposed DEC-NoC leverages applications' error tolerance and dynamically reduces the amount of error checking and correction in packet transmission, which results in a significant reduction in the number of retransmitted packets. The reduction in packet retransmission results in reduced power consumption. Our cycle accurate simulation using PARSEC benchmark suites shows that DEC-NoC achieves up to 56% latency reduction and up to 58% dynamic power reduction compared to NoC architectures with conventional error control techniques. 
    more » « less