skip to main content

Search for: All records

Award ID contains: 1702980

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 17, 2024
  2. Free, publicly-accessible full text available January 1, 2024
  3. Free, publicly-accessible full text available January 1, 2024
  4. In pursuit of higher inference accuracy, deep neural network (DNN) models have significantly increased in complexity and size. To overcome the consequent computational challenges, scalable chiplet-based accelerators have been proposed. However, data communication using metallic-based interconnects in these chiplet-based DNN accelerators is becoming a primary obstacle to performance, energy efficiency, and scalability. The photonic interconnects can provide adequate data communication support due to some superior properties like low latency, high bandwidth and energy efficiency, and ease of broadcast communication. In this paper, we propose SPACX: a Silicon Photonics-based Chiplet ACcelerator for DNN inference applications. Specifically, SPACX includes a photonic network design that enables seamless single-chiplet and cross-chiplet broadcast communications, and a tailored dataflow that promotes data broadcast and maximizes parallelism. Furthermore, we explore the broadcast granularities of the photonic network and implications on system performance and energy efficiency. A flexible bandwidth allocation scheme is also proposed to dynamically adjust communication bandwidths for different types of data. Simulation results using several DNN models show that SPACX can achieve 78% and 75% reduction in execution time and energy, respectively, as compared to other state-of-the-art chiplet-based DNN accelerators. 
    more » « less
  5. The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces network latency and power consumption by 39% and 30%, respectively, as compared to state-of-the-art security designs. 
    more » « less
  6. null (Ed.)
    The increased computational capability in heterogeneous manycore architectures facilitates the concurrent execution of many applications. This requires, among other things, a flexible, high-performance, and energy-efficient communication fabric capable of handling a variety of traffic patterns needed for running multiple applications at the same time. Such stringent requirements are posing a major challenge for current Network-on-Chips (NoCs) design. In this paper, we propose Adapt-NoC, a flexible NoC architecture, along with a reinforcement learning (RL)-based control policy, that can provide efficient communication support for concurrent application execution. Adapt-NoC can dynamically allocate several disjoint regions of the NoC, called subNoCs, with different sizes and locations for the concurrently running applications. Each of the dynamically-allocated subNoCs is capable of adapting to a given topology such as a mesh, cmesh, torus, or tree thus tailoring the topology to satisfy application’s needs in terms of performance and power consumption. Moreover, we explore the use of RL to design an efficient control policy which optimizes the subNoC topology selection for a given application. As such, Adapt-NoC can not only provide several topology choices for concurrently running applications, but can also optimize the selection of the most suitable topology for a given application with the aim of improving performance and energy efficiency. We evaluate Adapt-NoC using both GPU and CPU benchmark suites. Simulation results show that the proposed Adapt-NoC can achieve up to 34% latency reduction, 10% overall execution time reduction and 53% NoC energy-efficiency improvement when compared to prior work. 
    more » « less
  7. null (Ed.)