- Award ID(s):
- 1762353
- PAR ID:
- 10147191
- Date Published:
- Journal Name:
- Journal of Micro and Nano-Manufacturing
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2166-0468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Advances in solution-phase graphene patterning has provided a facile route for rapid, low-cost and scalable manufacturing of electrochemical devices, even on flexible substrates. While graphene possesses advantageous electrochemical properties of high surface area and fast heterogenous charge transport, these properties are attributed to the edge planes and defect sites, not the basal plane. Herein, we demonstrate enhancement of the electroactive nature of patterned solution-phase graphene by increasing the porosity and edge planes through the construction of a multidimensional architecture via salt impregnated inkjet maskless lithography (SIIML) and CO 2 laser annealing. Various sized macroscale pores (<25 to ∼250 μm) are patterned directly in the graphene surface by incorporating porogens ( i.e. , salt crystals) in the graphene ink which act as hard templates for pore formation and are later dissolved in water. Subsequently, microsized pores (∼100 nm to 2 μm in width) with edge plane defects are etched in the graphene lattice structure by laser annealing with a CO 2 laser, simultaneously improving electrical conductivity by nearly three orders of magnitude (sheet resistance decreases from >10 000 to ∼50 Ω sq −1 ). We demonstrate that this multidimensional porous graphene fabrication method can improve electrochemical device performance through design and manufacture of an electrochemical organophosphate biosensor that uses the enzyme acetylcholinesterase for detection. This pesticide biosensor exhibits enhanced sensitivity to acetylthiocholine compared to graphene without macropores (28.3 μA nM −1 to 13.3 μA nM −1 ) and when inhibited by organophosphate pesticides (paraoxon) has a wide linear range (10 nM to 500 nM), low limit of detection (0.6 nM), and high sensitivity (12.4 nA nM −1 ). Moreover, this fabrication method is capable of patterning complex geometries [ i.e. interdigitated electrodes (IDEs)] even on flexible surfaces as demonstrated by an IDE supercapacitor made of SIIML graphene on a heat sensitive polymer substrate. The supercapacitor demonstrates a high energy density of 0.25 mW h cm −3 at a power density of 0.3 W cm −3 . These electrochemical devices demonstrate the benefit of using SIIML and CO 2 laser annealing for patterning graphene electrodes with a multidimensional porous surface even on flexible substrates and is therefore a platform technology which could be applied to a variety of different biosensors and other electrochemical devices.more » « less
-
Abstract Organized nano‐ and microstructures of molecular semiconductors display interesting optical and photonic properties, and enhanced charge carrier mobilities, as compared to disordered thin films. However, known directed‐growth and self‐organization strategies cannot create structured molecular heterojunctions and cannot be practically incorporated into existing device fabrication routines to create large‐area optoelectronic devices. Here, an ultrathin (
< 2 nm) seed layer of the compound coronene creates 1D nanostructures of an electron‐transporting molecule (IFD) is shown, which possesses an intrinsic proclivity to form disordered thin films in the absence of the seed layer. It is revealed that nanostructured IFD films exhibit enhanced light absorption and emission, and greater electron mobilities, as compared to amorphous counterparts. This seed layer strategy creates uniform IFD nanowires over large areas of up to 18 mm2at low processing temperatures. Notably, the coronene seed layer creates IFD nanowires when applied over either oxide surfaces or predeposited organic layers, meaning that this structuring approach can be integrated into diode manufacturing routines to realize large‐area flexible optoelectronic devices. Flexible organic light‐emitting diodes and fullerene‐free organic solar cells containing IFD nanowires in the photoactive layer to demonstrate that molecular nanostructures can lead to robust, large‐area device arrays on flexible substrates being fabricated. -
Abstract Cracks are typically associated with the failure of materials. However, cracks can also be used to create periodic patterns on the surfaces of materials, as observed in the skin of crocodiles and elephants. In synthetic materials, surface patterns are critical to micro‐ and nanoscale fabrication processes. Here, a strategy is presented that enables freely programmable patterns of cracks on the surface of a polymer and then uses these cracks to pattern other materials. Cracks form during deposition of a thin film metal on a liquid crystal polymer network (LCN) and follow the spatially patterned molecular order of the polymer. These patterned sub‐micrometer scale cracks have an order parameter of 0.98 ± 0.02 and form readily over centimeter‐scale areas on the flexible substrates. The patterning of the LCN enables cracks that turn corners, spiral azimuthally, or radiate from a point. Conductive inks can be filled into these oriented cracks, resulting in flexible, anisotropic, and transparent conductors. This materials‐based processing approach to patterning cracks enables unprecedented control of the orientation, length, width, and depth of the cracks without costly lithography methods. This approach promises new architectures of electronics, sensors, fluidics, optics, and other devices with micro‐ and nanoscale features.
-
Thermoelectric devices have great potential as a sustainable energy conversion technology to harvest waste heat and perform spot cooling with high reliability. However, most of the thermoelectric devices use toxic and expensive materials, which limits their application. These materials also require high-temperature fabrication processes, limiting their compatibility with flexible, bio-compatible substrate. Printing electronics is an exciting new technique for fabrication that has enabled a wide array of biocompatible and conformable systems. Being able to print thermoelectric devices allows them to be custom made with much lower cost for their specific application. Significant effort has been directed toward utilizing polymers and other bio-friendly materials for low-cost, lightweight, and flexible thermoelectric devices. Fortunately, many of these materials can be printed using low-temperature printing processes, enabling their fabrication on biocompatible substrates. This review aims to report the recent progress in developing high performance thermoelectric inks for various printing techniques. In addition to the usual thermoelectric performance measures, we also consider the attributes of flexibility and the processing temperatures. Finally, recent advancement of printed device structures is discussed which aims to maximize the temperature difference across the junctions.more » « less
-
Abstract Functional oxides have extensively been investigated as a promising class of materials in a broad range of innovative applications. Harnessing the novel properties of functional oxides in micro‐ to nano‐scale applications hinges on establishing advanced fabrication and manufacturing techniques able to synthesize these materials in an accurate and reliable manner. Oxidative scanning probe lithography (o‐SPL), an atomic force microscopy (AFM) technique based on anodic oxidation at the water meniscus formed at the tip/substrate contact, not only combines the advantages of both “top‐down” and “bottom‐up” fabrication approaches, but also offers the possibility of fabricating oxide nanomaterials with high patterning accuracy. While the use of self‐assembled monolayers (SAMs) broadened the application of o‐SPL, significant challenges have emerged owing to the relatively limited number of SAM/solid surface combinations that can be employed for o‐SPL, which constrains the ability to control the chemistry and structure of oxides formed by o‐SPL. In this work, a new o‐SPL technique that utilizes room‐temperature ionic liquids (RTILs) as the functionalizing material to mediate the electrochemistry at AFM tip/substrate contacts is reported. The results show that the new IL‐mediated o‐SPL (IL‐o‐SPL) approach allows sub‐100 nm oxide features to be patterned on a model solid surface, namely steel, with an initiation voltage as low as −2 V. Moreover, this approach enables high tunability of both the chemical state and morphology of the patterned iron oxide structures. Owing to the high chemical compatibility of ILs, which derives from the possibility of synthesizing ILs able to adsorb on a wide variety of solid surfaces, IL‐o‐SPL can be extended to other material surfaces and provide the opportunity to accurately tailor the chemistry, morphology, and electronic properties within nanoscale domains, thus opening new pathways to the development of novel micro‐ and nano‐architectures for advanced integrated devices.