Skeletal ring enlargement is gaining renewed interest in synthetic chemistry and has recently focused on insertion of one or two atoms. Strategies for heterocyclic expansion through small-ring insertion remain elusive, although they would lead to the efficient formation of bicyclic products. Here, we report a photoinduced dearomative ring enlargement of thiophenes by insertion of bicyclo[1.1.0]butanes to produce eight-membered bicyclic rings under mild conditions. The synthetic value, broad functional-group compatibility, and excellent chemo- and regioselectivity were demonstrated by scope evaluation and product derivatization. Experimental and computational studies point toward a photoredox-induced radical pathway.
more »
« less
Dimeric boroles: effective sources of monomeric boroles for heterocycle synthesis
Monomeric boroles have been gaining attention as reagents for the synthesis of heterocycles due to their ability to insert atoms into the BC 4 ring in a single step. Although unique boron frameworks can be accessed via this methodology, the products feature aryl substitution on the carbon centers as steric bulk is required to preclude borole dimerization. This work demonstrates that insertion chemistry is possible with Diels–Alder dimeric boroles and that such reactivity is not exclusive to monomeric boroles with bulky groups. With 1-phenyl-2,3,4,5-tetramethylborole dimer, the formal 1,1-insertion of a nitrene and sulfur generate the six-membered aromatic 1,2-azaborine and 1,2-thiaborine, respectively. The isolation of the 1,2-thiaborine enabled the synthesis of an η 6 -chromium complex. Benzophenone and diphenylketene readily insert a CO unit to generate BOC 5 seven-membered rings confirming dimeric boroles can serve as monomeric synthons in 1,2-insertion reactions. An epoxide did not furnish the anticipated eight-membered BOC 6 ring, instead provided a bicyclic system with a BOC 3 ring. The insertion chemistry was demonstrated with two other borole dimers featuring different substitution with diphenylketene as a substrate. This work elevates borole insertion chemistry to a new level to access products that do not require bulky substitution.
more »
« less
- Award ID(s):
- 1753025
- PAR ID:
- 10147245
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 126 to 131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Previous work has demonstrated that variants of a heme protein, Rhodothermus marinus cytochrome c (Rma cyt c), catalyze abiological carbene boron–hydrogen (B–H) bond insertion with high efficiency and selectivity. Here we investigated this carbon–boron bond-forming chemistry with cyclic, lactone-based carbenes. Using directed evolution, we obtained a Rma cyt c variant BORLAC that shows high selectivity and efficiency for B–H insertion of 5- and 6-membered lactone carbenes (up to 24,500 total turnovers and 97.1:2.9 enantiomeric ratio). The enzyme shows low activity with a 7-membered lactone carbene. Computational studies revealed a highly twisted geometry of the 7-membered lactone carbene intermediate relative to 5- and 6-membered ones. Directed evolution of cytochrome c together with computational characterization of key iron-carbene intermediates has allowed us to expand the scope of enzymatic carbene B–H insertion to produce new lactone-based organoborons.more » « less
-
Lactones are cyclic esters with extensive applications in materials science, medicinal chemistry, and the food and perfume industries. Nature’s strategy for the synthesis of many lactones found in natural products always relies on a single type of retrosynthetic strategy, a C−O bond disconnection. Here, we describe a set of laboratory-engineered enzymes that use a new-tonature C−C bond-forming strategy to assemble diverse lactone structures. These engineered “carbene transferases” catalyze intramolecular carbene insertions into benzylic or allylic C−H bonds, which allow for the synthesis of lactones with different ring sizes and ring scaffolds from simple starting materials. Starting from a serine-ligated cytochrome P450 variant previously engineered for other carbene-transfer activities, directed evolution generated a variant P411-LAS-5247, which exhibits a high activity for constructing a five-membered ε-lactone, lactam, and cyclic ketone products (up to 5600 total turnovers (TTN) and >99% enantiomeric excess (ee)). Further engineering led to variants P411-LAS-5249 and P411-LAS-5264, which deliver six-membered δ-lactones and seven-membered ε-lactones, respectively, overcoming the thermodynamically unfavorable ring strain associated with these products compared to the γ-lactones. This new carbene-transfer activity was further extended to the synthesis of complex lactone scaffolds based on fused, bridged, and spiro rings. The enzymatic platform developed here complements natural biosynthetic strategies for lactone assembly and expands the structural diversity of lactones accessible through C−H functionalization.more » « less
-
Dynemicin is an enediyne natural product fromMicromonospora chersinaATCC53710. Access to the biosynthetic gene cluster of dynemicin has enabled thein vitrostudy of gene products within the cluster to decipher their roles in assembling this unique molecule. This paper reports the crystal structure of DynF, the gene product of one of the genes within the biosynthetic gene cluster of dynemicin. DynF is revealed to be a dimeric eight-stranded β-barrel structure with palmitic acid bound within a cavity. The presence of palmitic acid suggests that DynF may be involved in binding the precursor polyene heptaene, which is central to the synthesis of the ten-membered ring of the enediyne core.more » « less
-
Abstract Catalytic enantioselective 1,2-dicarbofunctionalization (1,2-DCF) of alkenes is a powerful transformation of growing importance in organic synthesis for constructing chiral building blocks, bioactive molecules, and agrochemicals. Both in a two- and three-component context, this family of reactions generates densely functionalized, structurally complex products in a single step. Across several distinct mechanistic pathways at play in these transformations with nickel or palladium catalysts, stereocontrol can be obtained through tailored chiral ligands. In this Review we discuss the various strategies, mechanisms, and catalysts that have been applied to achieve enantioinduction in alkene 1,2-DCF. 1 Introduction 2 Two-Component Enantioselective 1,2-DCF via Migratory Insertion 3 Two-Component Enantioselective 1,2-DCF via Radical Capture 4 Three-Component Enantioselective 1,2-DCF via Radical Capture 5 Three-Component Enantioselective 1,2-DCF via Migratory Insertion 6 Miscellaneous Mechanisms 7 Conclusionmore » « less
An official website of the United States government

