skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dearomative ring expansion of thiophenes by bicyclobutane insertion
Skeletal ring enlargement is gaining renewed interest in synthetic chemistry and has recently focused on insertion of one or two atoms. Strategies for heterocyclic expansion through small-ring insertion remain elusive, although they would lead to the efficient formation of bicyclic products. Here, we report a photoinduced dearomative ring enlargement of thiophenes by insertion of bicyclo[1.1.0]butanes to produce eight-membered bicyclic rings under mild conditions. The synthetic value, broad functional-group compatibility, and excellent chemo- and regioselectivity were demonstrated by scope evaluation and product derivatization. Experimental and computational studies point toward a photoredox-induced radical pathway.  more » « less
Award ID(s):
2153972
PAR ID:
10505409
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science
Volume:
381
Issue:
6653
ISSN:
0036-8075
Page Range / eLocation ID:
75 to 81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monomeric boroles have been gaining attention as reagents for the synthesis of heterocycles due to their ability to insert atoms into the BC 4 ring in a single step. Although unique boron frameworks can be accessed via this methodology, the products feature aryl substitution on the carbon centers as steric bulk is required to preclude borole dimerization. This work demonstrates that insertion chemistry is possible with Diels–Alder dimeric boroles and that such reactivity is not exclusive to monomeric boroles with bulky groups. With 1-phenyl-2,3,4,5-tetramethylborole dimer, the formal 1,1-insertion of a nitrene and sulfur generate the six-membered aromatic 1,2-azaborine and 1,2-thiaborine, respectively. The isolation of the 1,2-thiaborine enabled the synthesis of an η 6 -chromium complex. Benzophenone and diphenylketene readily insert a CO unit to generate BOC 5 seven-membered rings confirming dimeric boroles can serve as monomeric synthons in 1,2-insertion reactions. An epoxide did not furnish the anticipated eight-membered BOC 6 ring, instead provided a bicyclic system with a BOC 3 ring. The insertion chemistry was demonstrated with two other borole dimers featuring different substitution with diphenylketene as a substrate. This work elevates borole insertion chemistry to a new level to access products that do not require bulky substitution. 
    more » « less
  2. null (Ed.)
    Explored was the competitive ring-closing metathesis vs. ring-rearrangement metathesis of bicyclo[3.2.1]octenes prepared by a simple and convergent synthesis from bicyclic alkylidenemalono-nitriles and allylic electrophiles. It was uncovered that ring-closing metathesis occurs exclusively on the tetraene-variant, yielding unique, stereochemically and functionally rich polycyclic bridged frameworks, whereas the reduced version (a triene) undergoes ring-rearrangement metathesis to 5 – 6 – 5 fused ring systems resembling the isoryanodane core. 
    more » « less
  3. Abstract A Brønsted acid catalyzed C–H functionalization of vinyldiazoacetates with 3-hydroxyisoindolinone is developed. This methodology provides a general access to E-substituted isoindolinone vinyldiazo compounds in good yields and excellent diastereoselectivities with broad substrate generality under mild conditions, and with 4-substituted 2-diazo-3-butenoates produces fused bicyclic pyrrolidines. The reaction generally involves addition of the N-acyl ketiminium electrophile, formed from the 3-hydroxyisoindolinone, to the vinylogous position of the vinyldiazo compound resulting in vinyldiazonium ion intermediates that undergo deprotonation to new vinyldiazo compounds or ring closure to fused bicyclic pyrrolidines. 
    more » « less
  4. Abstract Despite the unique reactivity of vitamin B12and its derivatives, B12‐dependent enzymes remain underutilized in biocatalysis. In this study, we repurposed the B12‐dependent transcription factor CarH to enable non‐native radical cyclization reactions. An engineered variant of this enzyme, CarH*, catalyzes the formation γ‐ and δ‐lactams through either redox‐neutral or reductive ring closure with marked enhancement of reactivity and selectivity relative to the free B12cofactor. CarH* also catalyzes an unusual spirocyclization by dearomatization of pendant arenes to produce bicyclic 1,3‐diene products instead of 1,4‐dienes provided by existing methods. These results and associated mechanistic studies highlight the importance of protein scaffolds for controlling the reactivity of B12and expanding the synthetic utility of B12‐dependent enzymes. 
    more » « less
  5. Abstract Transition metal catalysis plays a pivotal role in transforming unreactive C–H bonds. However, regioselective activation of distal aliphatic C–H bonds poses a tremendous challenge, particularly in the absence of directing templates. Activation of a methylene C–H bond in the presence of methyl C–H is underexplored. Here we show activation of a methylene C–H bond in the presence of methyl C–H bonds to form unsaturated bicyclic lactones. The protocol allows the reversal of the general selectivity in aliphatic C–H bond activation. Computational studies suggest that reversible C–H activation is followed by β-hydride elimination to generate the Pd-coordinated cycloalkene that undergoes stereoselective C–O cyclization, and subsequent β-hydride elimination to provide bicyclic unsaturated lactones. The broad generality of this reaction has been highlighted via dehydrogenative lactonization of mid to macro ring containing acids along with the C–H olefination reaction with olefin and allyl alcohol. The method substantially simplifies the synthesis of important bicyclic lactones that are important features of natural products as well as pharmacoactive molecules. 
    more » « less