skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moist Heat Stress on a Hotter Earth
As the world overheats—potentially to conditions warmer than during the three million years over which modern humans evolved—suffering from heat stress will become widespread. Fundamental questions about humans’ thermal tolerance limits are pressing. Understanding heat stress as a process requires linking a network of disciplines, from human health and evolutionary theory to planetary atmospheres and economic modeling. The practical implications of heat stress are equally transdisciplinary, requiring technological, engineering, social, and political decisions to be made in the coming century. Yet relative to the importance of the issue, many of heat stress's crucial aspects, including the relationship between its underlying atmospheric drivers—temperature, moisture, and radiation—remain poorly understood. This review focuses on moist heat stress, describing a theoretical and modeling framework that enables robust prediction of the averaged properties of moist heat stress extremes and their spatial distribution in the future, and draws some implications for human and natural systems from this framework. ▪ Moist heat stress affects society; we summarize drivers of moist heat stress and assess future impacts on societal and global scales. ▪ Moist heat stress pattern scaling of climate models allows research on future heat waves, infrastructure planning, and economic productivity. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1805808
PAR ID:
10147361
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Earth and Planetary Sciences
Volume:
48
Issue:
1
ISSN:
0084-6597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kerry Emanuel (Ed.)
    As heatwaves become more frequent, intense, and longer-lasting due to climate change, the question of breaching thermal limits becomes pressing. A wet-bulb temperature (Tw) of 35 °C has been proposed as a theoretical upper limit on human abilities to biologically thermoregulate. But, recent—empirical—research using human subjects found a significantly lower maximum Twat which thermoregulation is possible even with minimal metabolic activity. Projecting future exposure to this empirical critical environmental limit has not been done. Here, using this more accurate threshold and the latest coupled climate model results, we quantify exposure to dangerous, potentially lethal heat for future climates at various global warming levels. We find that humanity is more vulnerable to moist heat stress than previously proposed because of these lower thermal limits. Still, limiting warming to under 2 °C nearly eliminates exposure and risk of widespread uncompensable moist heatwaves as a sharp rise in exposure occurs at 3 °C of warming. Parts of the Middle East and the Indus River Valley experience brief exceedances with only 1.5 °C warming. More widespread, but brief, dangerous heat stress occurs in a +2 °C climate, including in eastern China and sub-Saharan Africa, while the US Midwest emerges as a moist heat stress hotspot in a +3 °C climate. In the future, moist heat extremes will lie outside the bounds of past human experience and beyond current heat mitigation strategies for billions of people. While some physiological adaptation from the thresholds described here is possible, additional behavioral, cultural, and technical adaptation will be required to maintain healthy lifestyles. 
    more » « less
  2. Future sea-level rise poses an existential threat for many river deltas, yet quantifying the effect of sea-level changes on these coastal landforms remains a challenge. Sea-level changes have been slow compared to other coastal processes during the instrumental record, such that our knowledge comes primarily from models, experiments, and the geologic record. Here we review the current state of science on river delta response to sea-level change, including models and observations from the Holocene until 2300 CE. We report on improvements in the detection and modeling of past and future regional sea-level change, including a better understanding of the underlying processes and sources of uncertainty. We also see significant improvements in morphodynamic delta models. Still, substantial uncertainties remain, notably on present and future subsidence rates in and near deltas. Observations of delta submergence and land loss due to modern sea-level rise also remain elusive, posing major challenges to model validation. ▪ There are large differences in the initiation time and subsequent delta progradation during the Holocene, likely from different sea-level and sediment supply histories. ▪ Modern deltas are larger and will face faster sea-level rise than during their Holocene growth, making them susceptible to forced transgression. ▪ Regional sea-level projections have been much improved in the past decade and now also isolate dominant sources of uncertainty, such as the Antarctic ice sheet. ▪ Vertical land motion in deltas can be the dominant source of relative sea-level change and the dominant source of uncertainty; limited observations complicate projections. ▪ River deltas globally might lose 5% (∼35,000 km 2 ) of their surface area by 2100 and 50% by 2300 due to relative sea-level rise under a high-emission scenario. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Abstract Storms operated by moist convection and the condensation of CH4or H2S have been observed on Uranus and Neptune. However, the mechanism of cloud formation, thermal structure, and mixing efficiency of ice giant weather layers remains unclear. In this paper, we show that moist convection is limited by heat transport on giant planets, especially on ice giants where planetary heat flux is weak. Latent heat associated with condensation and evaporation can efficiently bring heat across the weather layer through precipitations. This effect was usually neglected in previous studies without a complete hydrological cycle. We first derive analytical theories and show that the upper limit of cloud density is determined by the planetary heat flux and microphysics of clouds but is independent of the atmospheric composition. The eddy diffusivity of moisture depends on the planetary heat fluxes, atmospheric composition, and surface gravity but is not directly related to cloud microphysics. We then conduct convection- and cloud-resolving simulations with SNAP to validate our analytical theory. The simulated cloud density and eddy diffusivity are smaller than the results acquired from the equilibrium cloud condensation model and mixing length theory by several orders of magnitude but consistent with our analytical solutions. Meanwhile, the mass-loading effect of CH4and H2S leads to superadiabatic and stable weather layers. Our simulations produced three cloud layers that are qualitatively similar to recent observations. This study has important implications for cloud formation and eddy mixing in giant planet atmospheres in general and observations for future space missions and ground-based telescopes. 
    more » « less
  4. Abstract This article investigates the effect of urban expansion and climate change impacts on heat stress (HS) for Arizona's (AZ; USA) two largest urban agglomerations, the Phoenix and Tucson metropolitan areas, under relatively dry and moist warm conditions with the Weather Research and Forecasting (WRF)‐urban modeling system. We dynamically downscale two contemporary summers, one dry and one moist, relatively to their respective seasonal‐mean specific humidity across AZ. Urban expansion impacts on HS are assessed by performing two identical simulations for each contemporary summer using different land use‐land cover representations: one simulation with the current urban landscape, and one simulation replaces the urban cover with the region's most representative MODIS vegetation type. Climate change impacts on HS are evaluated by performing four additional future simulations, two via dynamical downscaling of relatively dry conditions (one summer under the RCP8.5 and one summer under the RCP4.5 emissions pathways) and two of relatively moist conditions (one summer for each RCP pathway). The selection of future summers is based on their respective seasonal‐mean specific humidity across AZ from an end‐of‐century analysis of 2086–2100. We characterize impacts on HS by examining changes in near‐surface air temperature, Heat Index (HI), and the Universal Thermal Climate Index (UTCI) across urban areas under dry and moist warm conditions. Our results demonstrate that climate change impacts on HS are not well captured by examining only the projected changes in air temperature and are dependent on the bioclimate index considered. Additionally, we apply a new human heat balance (HHB) approach to evaluate the number of hours per day that an acclimatized and non‐acclimatized person would experience uncompensable HS and compare these results (with the number of hours per day) that we obtain when the HI and UTCI surpass commonly used thresholds considered “dangerous” and of “extreme heat stress”, respectively. The HI and UTCI overestimate the number of hours per day that a healthy, acclimatized person would experience uncompensable HS and underestimate dangerous HS for a non‐acclimatized person under both dry and moist conditions, emphasizing that standard metrics may not produce the most informative physiological estimates of HS. 
    more » « less
  5. Rocky planets are common around other stars, but their atmospheric properties remain largely unconstrained. Thanks to a wealth of recent planet discoveries and upcoming advances in observing capability, we are poised to characterize the atmospheres of dozens of rocky exoplanets in this decade. The theoretical understanding of rocky exoplanet atmospheres has advanced considerably in the last few years, yielding testable predictions of their evolution, chemistry, dynamics, and even possible biosignatures. We review key progress in this field to date and discuss future objectives. Our major conclusions are as follows: ▪ Many rocky planets may form with initial H 2 –He envelopes that are later lost to space, likely due to a combination of stellar UV/X-ray irradiation and internal heating. ▪ After the early stages of evolution, a wide diversity of atmospheric compositions is expected as a result of variations in host star flux, atmospheric escape rates, interior exchange, and other factors. ▪ Observations have ruled out both the presence of H 2 -dominated atmospheres on several nearby rocky exoplanets and the presence of any thick atmosphere on one target. A more detailed atmospheric characterization of these planets and others will become possible in the near future. ▪ Exoplanet biosphere searches are an exciting future goal. However, reliable detections for a representative sample of planets will require further advances in observing capability and improvements in our understanding of abiotic planetary processes. 
    more » « less