Abstract The effect of aerosols on the properties of clouds is a large source of uncertainty in predictions of weather and climate. These aerosol‐cloud interactions depend critically on the ability of aerosol particles to form cloud droplets. A challenge in modeling aerosol‐cloud interactions is the representation of interactions between turbulence and cloud microphysics. Turbulent mixing leads to small‐scale fluctuations in water vapor and temperature that are unresolved in large‐scale atmospheric models. To quantify the impact of turbulent fluctuations on cloud condensation nuclei (CCN) activation, we used a high‐resolution Large Eddy Simulation of a convective cloud chamber to drive particle‐based cloud microphysics simulations. We show small‐scale fluctuations strongly impact CCN activity. Once activated, the relatively long timescales of evaporation compared to fluctuations causes droplets to persist in subsaturated regions, which further increases droplet concentrations.
more »
« less
Heat-flux-limited Cloud Activity and Vertical Mixing in Giant Planet Atmospheres with an Application to Uranus and Neptune
Abstract Storms operated by moist convection and the condensation of CH4or H2S have been observed on Uranus and Neptune. However, the mechanism of cloud formation, thermal structure, and mixing efficiency of ice giant weather layers remains unclear. In this paper, we show that moist convection is limited by heat transport on giant planets, especially on ice giants where planetary heat flux is weak. Latent heat associated with condensation and evaporation can efficiently bring heat across the weather layer through precipitations. This effect was usually neglected in previous studies without a complete hydrological cycle. We first derive analytical theories and show that the upper limit of cloud density is determined by the planetary heat flux and microphysics of clouds but is independent of the atmospheric composition. The eddy diffusivity of moisture depends on the planetary heat fluxes, atmospheric composition, and surface gravity but is not directly related to cloud microphysics. We then conduct convection- and cloud-resolving simulations with SNAP to validate our analytical theory. The simulated cloud density and eddy diffusivity are smaller than the results acquired from the equilibrium cloud condensation model and mixing length theory by several orders of magnitude but consistent with our analytical solutions. Meanwhile, the mass-loading effect of CH4and H2S leads to superadiabatic and stable weather layers. Our simulations produced three cloud layers that are qualitatively similar to recent observations. This study has important implications for cloud formation and eddy mixing in giant planet atmospheres in general and observations for future space missions and ground-based telescopes.
more »
« less
- Award ID(s):
- 2307463
- PAR ID:
- 10501984
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2632-3338
- Format(s):
- Medium: X Size: Article No. 101
- Size(s):
- Article No. 101
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Aerosol–cloud interactions remain largely uncertain with respect to predicting theirimpacts on weather and climate. Cloud microphysics parameterization is oneof the factors leading to large uncertainty. Here, we investigate the impactsof anthropogenic aerosols on the convective intensity and precipitation of athunderstorm occurring on 19 June 2013 over Houston with the Chemistryversion of Weather Research and Forecast model (WRF-Chem) using the Morrisontwo-moment bulk scheme and spectral bin microphysics (SBM) scheme. We findthat the SBM predicts a deep convective cloud that shows better agreement withobservations in terms of reflectivity and precipitation compared with theMorrison bulk scheme that has been used in many weather and climate models.With the SBM scheme, we see a significant invigoration effect on convectiveintensity and precipitation by anthropogenic aerosols, mainly throughenhanced condensation latent heating. Such an effect is absent withthe Morrison two-moment bulk microphysics, mainly because the saturationadjustment approach for droplet condensation and evaporation calculationlimits the enhancement by aerosols in (1) condensation latent heat byremoving the dependence of condensation on droplets and aerosols and (2) ice-related processes because the approach leads to stronger warm rain andweaker ice processes than the explicit supersaturation approach.more » « less
-
Abstract The convection–cloud chamber enables measurement of aerosol and cloud microphysics, as well as their interactions, within a turbulent environment under steady‐state conditions. Increasing the size of a convection–cloud chamber, while holding the imposed temperature difference constant, leads to increased Rayleigh, Reynolds and Nusselt numbers. Large–eddy simulation coupled with a bin microphysics model allows the influence of increased velocity, time, and spatial scales on cloud microphysical properties to be explored. Simulations of a convection–cloud chamber, with fixed aspect ratio and increasing heights ofH = 1, 2, 4, and (for dry conditions only) 8 m are performed. The key findings are: Velocity fluctuations scale asH1/3, consistent with the Deardorff expression for convective velocity, and implying that the turbulence correlation time scales asH2/3. Temperature and other scalar fluctuations scale asH−3/7. Droplet size distributions from chambers of different sizes can be matched by adjusting the total aerosol injection rate as the horizontal cross‐sectional area (i.e., asH2for constant aspect ratio). Injection of aerosols at a point versus distributed throughout the volume makes no difference for polluted conditions, but can lead to cloud droplet size distribution broadening in clean conditions. Cloud droplet growth by collision and coalescence leads to a broader right tail of the distribution compared to condensation growth alone, and this tail increases in magnitude and extent monotonically as the increase of chamber height. These results also have implications for scaling within turbulent, cloudy mixed‐layers in the atmosphere, such as fog layers.more » « less
-
Abstract Modification of grasslands into irrigated and nonirrigated agriculture in the Great Plains resulted in significant impacts on weather and climate. However, there has been lack of observational data–based studies solely focused on impacts of irrigation on the PBL and convective conditions. The Great Plains Irrigation Experiment (GRAINEX), conducted during the 2018 growing season, collected data over irrigated and nonirrigated land uses over Nebraska to understand these impacts. Specifically, the objective was to determine whether the impacts of irrigation are sustained throughout the growing season. The data analyzed include latent and sensible heat flux, air temperature, dewpoint temperature, equivalent temperature (moist enthalpy), PBL height, lifting condensation level (LCL), level of free convection (LFC), and PBL mixing ratio. Results show increased partitioning of energy into latent heat relative to sensible heat over irrigated areas while average maximum air temperature was decreased and dewpoint temperature was increased from the early to peak growing season. Radiosonde data suggest reduced planetary boundary layer (PBL) heights at all launch sites from the early to peak growing season. However, reduction of PBL height was much greater over irrigated areas than over nonirrigated croplands. Relative to the early growing period, LCL and LFC heights were also lower during the peak growing period over irrigated areas. Results note, for the first time, that the impacts of irrigation on PBL evolution and convective environment can be sustained throughout the growing season and regardless of background atmospheric conditions. These are important findings and applicable to other irrigated areas in the world. Significance StatementTo meet the ever-increasing demand for food, many regions of the world have adopted widespread irrigation. The High Plains Aquifer (HPA) region, located within the Great Plains of the United States, is one of the most extensively irrigated regions. In this study, for the first time, we have conducted a detailed irrigation-focused land surface and atmospheric data collection campaign to determine irrigation impacts on the atmosphere. This research demonstrates that irrigation significantly alters lower atmospheric characteristics and creates favorable cloud and convection development conditions during the growing season. The results clearly show first-order impacts of irrigation on regional weather and climate and hence warrant further attention so that we can minimize negative impacts and achieve sustainable irrigation.more » « less
-
Abstract A simple analytical model, the zero‐buoyancy plume (ZBP) model, has been proposed to understand how small‐scale processes such as plume‐environment mixing and evaporation affect the steady‐state structure of the atmosphere. In this study, we refine the ZBP model to achieve self‐consistent analytical solutions for convective mass flux, addressing the inconsistencies in previous solutions. Our refined ZBP model reveals that increasing plume‐environment mixing can increase upper‐troposphere mass flux through two pathways: increased cloud evaporation or reduced atmospheric stability. To validate these findings, we conducted small‐domain convection‐permitting Radiative‐Convective Equilibrium simulations with horizontal resolutions ranging from 4 km to 125 m. As a proxy for plume‐environment mixing strength, the diagnosed entrainment rate increases with finer resolution. Consistent with a previous study, we observed that both anvil cloud fraction and upper‐troposphere mass flux increase with higher resolution. Analysis of the clear‐sky energy balance in the simulations with two different microphysics schemes identified both pathways proposed by the ZBP model. The dominant pathway depends on the relative strengths of evaporation cooling and radiative cooling in the environment. Our work provides a refined simple framework for understanding the interaction between small‐scale convective processes and large‐scale atmospheric structure.more » « less
An official website of the United States government
