skip to main content


Search for: All records

Award ID contains: 1805808

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Human heat stress depends jointly on atmospheric temperature and humidity. Wetter soils reduce temperature but also raise humidity, making the collective impact on heat stress unclear. To better understand these interactions, we use ERA5 to examine the coupling between daily average soil moisture and wet-bulb temperature (Tw) and its seasonal and diurnal cycle at global scale. We identify a global soil moisture–Twcoupling pattern with both widespread negative and positive correlations in contrast to the well-established cooling effect of wet soil on dry-bulb temperature. Regions showing positive correlations closely resemble previously identified land–atmosphere coupling hotspots where soil moisture effectively controls surface energy partition. Soil moisture–Twcoupling varies seasonally closely tied to monsoon development, and the positive coupling is slightly stronger and more widespread during nighttime. Local-scale analysis demonstrates a nonlinear structure of soil moisture–Twcoupling with stronger coupling under relatively dry soils. Hot days with highTwvalues show wetter-than-normal soil, anomalous high latent and low sensible heat flux from a cooler surface, and a shallower boundary layer. This supports the hypothesis that wetter soil increasesTwby concentrating surface moist enthalpy flux within a shallower boundary layer and reducing free-troposphere-air entrainment. We identify areas of particular interest for future studies on the physical mechanisms of soil moisture–heat stress coupling. Our findings suggest that increasing soil moisture might amplify heat stress over large portions of the world including several densely populated areas. These results also raise questions about the effectiveness of evaporative cooling strategies in ameliorating urban heat stress.

    Significance Statement

    The purpose of this study is to provide a global picture of the relationship between soil moisture anomalies and a heat stress metric that includes the joint effects of temperature and humidity. This is important because a better understanding of this relationship will help improve the prediction of extreme heat stress events and inform strategies for ameliorating heat stress. We find a widespread positive correlation between soil moisture and heat stress, in contrast to studies relying on temperature alone. This raises the possibility that, over much of the world, and in the most populous regions, strategies like irrigation or “greening” that can reduce temperature might be ineffective or even harmful in reducing heat stress with humidity incorporated.

     
    more » « less
  2. Abstract

    Wet‐bulb globe temperature (WBGT) is a widely applied heat stress index. However, most applications of WBGT within the heat stress impact literature that do not use WBGT at all, but use one of the ad hoc approximations, typically the simplified WBGT (sWBGT) or the environmental stress index (ESI). Surprisingly, little is known about how well these approximations work for the global climate and climate change settings that they are being applied to. Here, we assess the bias distribution as a function of temperature, humidity, wind speed, and radiative conditions of both sWBGT and ESI relative to a well‐validated, explicit physical model for WBGT developed by Liljegren, within an idealized context and the more realistic setting of ERA5 reanalysis data. sWBGT greatly overestimates heat stress in hot‐humid areas. ESI has much smaller biases in the range of standard climatological conditions. Over subtropical dry regions, both metrics can substantially underestimate extreme heat. We show systematic overestimation of labor loss by sWBGT over much of the world today. We recommend discontinuing the use of sWBGT. ESI may be acceptable for assessing average heat stress or integrated impact over a long period like a year, but less suitable for health applications, extreme heat stress analysis, or as an operational index for heat warning, heatwave forecasting, or guiding activity modification at the workplace. Nevertheless, Liljegren's approach should be preferred over these ad hoc approximations and we provide a fast Python implementation to encourage its widespread use.

     
    more » « less
  3. Abstract

    The direct impacts of climate change on crop yields and human health are individually well-studied, but the interaction between the two have received little attention. Here we analyze the consequences of global warming for agricultural workers and the crops they cultivate using a global economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on humans’ ability to work. Based on two metrics of heat stress and two labor functions, combined with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also expanding the labor impacts to highlight the potential importance on non-staple crops. We find, worldwide, labor and yield impacts within staple grains are equally important at +3C warming, relative to the 1986–2005 baseline. Furthermore, the widely overlooked labor impacts are dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those regions, heat stress with 3C global warming could reduce labor capacity in agriculture by 30%–50%, increasing food prices and requiring much higher levels of employment in the farm sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices rising by 5%, relative to baseline.

     
    more » « less
  4. Free, publicly-accessible full text available April 10, 2025
  5. Kerry Emanuel (Ed.)

    As heatwaves become more frequent, intense, and longer-lasting due to climate change, the question of breaching thermal limits becomes pressing. A wet-bulb temperature (Tw) of 35 °C has been proposed as a theoretical upper limit on human abilities to biologically thermoregulate. But, recent—empirical—research using human subjects found a significantly lower maximum Twat which thermoregulation is possible even with minimal metabolic activity. Projecting future exposure to this empirical critical environmental limit has not been done. Here, using this more accurate threshold and the latest coupled climate model results, we quantify exposure to dangerous, potentially lethal heat for future climates at various global warming levels. We find that humanity is more vulnerable to moist heat stress than previously proposed because of these lower thermal limits. Still, limiting warming to under 2 °C nearly eliminates exposure and risk of widespread uncompensable moist heatwaves as a sharp rise in exposure occurs at 3 °C of warming. Parts of the Middle East and the Indus River Valley experience brief exceedances with only 1.5 °C warming. More widespread, but brief, dangerous heat stress occurs in a +2 °C climate, including in eastern China and sub-Saharan Africa, while the US Midwest emerges as a moist heat stress hotspot in a +3 °C climate. In the future, moist heat extremes will lie outside the bounds of past human experience and beyond current heat mitigation strategies for billions of people. While some physiological adaptation from the thresholds described here is possible, additional behavioral, cultural, and technical adaptation will be required to maintain healthy lifestyles.

     
    more » « less
  6. As the world overheats—potentially to conditions warmer than during the three million years over which modern humans evolved—suffering from heat stress will become widespread. Fundamental questions about humans’ thermal tolerance limits are pressing. Understanding heat stress as a process requires linking a network of disciplines, from human health and evolutionary theory to planetary atmospheres and economic modeling. The practical implications of heat stress are equally transdisciplinary, requiring technological, engineering, social, and political decisions to be made in the coming century. Yet relative to the importance of the issue, many of heat stress's crucial aspects, including the relationship between its underlying atmospheric drivers—temperature, moisture, and radiation—remain poorly understood. This review focuses on moist heat stress, describing a theoretical and modeling framework that enables robust prediction of the averaged properties of moist heat stress extremes and their spatial distribution in the future, and draws some implications for human and natural systems from this framework. ▪ Moist heat stress affects society; we summarize drivers of moist heat stress and assess future impacts on societal and global scales. ▪ Moist heat stress pattern scaling of climate models allows research on future heat waves, infrastructure planning, and economic productivity. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less