skip to main content


Title: Ferromagnetic order beyond the superconducting dome in a cuprate superconductor

According to conventional wisdom, the extraordinary properties of the cuprate high-temperature superconductors arise from doping a strongly correlated antiferromagnetic insulator. The highly overdoped cuprates—whose doping lies beyond the dome of superconductivity—are considered to be conventional Fermi liquid metals. We report the emergence of itinerant ferromagnetic order below 4 kelvin for doping beyond the superconducting dome in thin films of electron-doped La2–xCexCuO4(LCCO). The existence of this ferromagnetic order is evidenced by negative, anisotropic, and hysteretic magnetoresistance, hysteretic magnetization, and the polar Kerr effect, all of which are standard signatures of itinerant ferromagnetism in metals. This surprising result suggests that the overdoped cuprates are strongly influenced by electron correlations.

 
more » « less
Award ID(s):
1708334
NSF-PAR ID:
10147466
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6490
ISSN:
0036-8075
Page Range / eLocation ID:
p. 532-534
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the physics of condensed matter, quantum critical phenomena and unconventional superconductivity are two major themes. In electron-doped cuprates, the low critical field (HC2) allows one to study the putative quantum critical point (QCP) at low temperature and to understand its connection to the long-standing problem of the origin of the high-TCsuperconductivity. Here we present measurements of the low-temperature normal-state thermopower (S) of the electron-doped cuprate superconductor La2−xCexCuO4(LCCO) fromx= 0.11–0.19. We observe quantum criticalS/Tversusln(1/T)behavior over an unexpectedly wide doping rangex= 0.15–0.17 above the QCP (x= 0.14), with a slope that scales monotonically with the superconducting transition temperature (TCwith H = 0). The presence of quantum criticality over a wide doping range provides a window on the criticality. The thermopower behavior also suggests that the critical fluctuations are linked withTC. Above the superconductivity dome, atx= 0.19, a conventional Fermi-liquidSTbehavior is found forT40 K.

     
    more » « less
  2. Abstract

    As one of the most fundamental physical phenomena, charge density wave (CDW) order predominantly occurs in metallic systems such as quasi‐1D metals, doped cuprates, and transition metal dichalcogenides, where it is well understood in terms of Fermi surface nesting and electron–phonon coupling mechanisms. On the other hand, CDW phenomena in semiconducting systems, particularly at the low carrier concentration limit, are less common and feature intricate characteristics, which often necessitate the exploration of novel mechanisms, such as electron–hole coupling or Mott physics, to explain. In this study, an approach combining electrical transport, synchrotron X‐ray diffraction, and density‐functional theory calculations is used to investigate CDW order and a series of hysteretic phase transitions in a diluted‐band semiconductor, BaTiS3. These experimental and theoretical findings suggest that the observed CDW order and phase transitions in BaTiS3may be attributed to both electron–phonon coupling and non‐negligible electron–electron interactions in the system. This work highlights BaTiS3as a unique platform to explore CDW physics and novel electronic phases in the dilute filling limit and opens new opportunities for developing novel electronic devices.

     
    more » « less
  3. Abstract

    The class ofAV3Sb5(A=K, Rb, Cs) kagome metals hosts unconventional charge density wave states seemingly intertwined with their low temperature superconducting phases. The nature of the coupling between these two states and the potential presence of nearby, competing charge instabilities however remain open questions. This phenomenology is strikingly highlighted by the formation of two ‘domes’ in the superconducting transition temperature upon hole-doping CsV3Sb5. Here we track the evolution of charge correlations upon the suppression of long-range charge density wave order in the first dome and into the second of the hole-doped kagome superconductor CsV3Sb5−xSnx. Initially, hole-doping drives interlayer charge correlations to become short-ranged with their periodicity diminished along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3Sb5, and reveal a complex landscape of charge correlations within its electronic phase diagram. Our data suggest an inherent 2kfcharge instability and competing charge orders in theAV3Sb5class of kagome superconductors.

     
    more » « less
  4. An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called “strange metal” state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates—in contrast to hole-doped cuprates—it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La 2− x Ce x CuO 4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping ( x ) above the putative QCP ( x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome ( x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high- T c superconductivity. 
    more » « less
  5. A common characteristic of many “overdoped” cuprates prepared with high-pressure oxygen isTcvalues ≥ 50 K that often exceed that of optimally doped parent compounds, despite O stoichiometries that place the materials at the edge or outside of the conventional boundary between superconducting and normal Fermi liquid states. X-ray absorption fine-structure (XAFS) measurements at 52 K on samples of high-pressure oxygen (HPO) YSr2Cu2.75Mo0.25O7.54,Tc= 84 K show that the Mo is in the (VI) valence in an unusually undistorted octahedral geometry with predominantly Mo neighbors that is consistent with its assigned substitution for Cu in the chain sites of the structure. Perturbations of the Cu environments are minimal, although the Cu X-ray absorption near-edge structure (XANES) differs from that in other cuprates. The primary deviation from the crystal structure is therefore nanophase separation into Mo- and Cu-enriched domains. There are, however, indications that the dynamical attributes of the structure are altered relative to YBa2Cu3O7, including a shift of the Cu-apical O two-site distribution from the chain to the plane Cu sites. Another effect that would influenceTcis the possibility of multiple bands at the Fermi surface caused by the presence of the second phase and the lowering of the Fermi level.

     
    more » « less