skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion–Anion Linkages
Award ID(s):
1632825 1709909
PAR ID:
10147611
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
142
Issue:
5
ISSN:
0002-7863
Page Range / eLocation ID:
2579 to 2591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ability of a TrCl 4 − anion (Tr = Al, Ga, In, Tl) to engage in a triel bond with both a neutral NH 3 and CN − anion is assessed by ab initio quantum calculations in both the gas phase and in aqueous medium. Despite the absence of a positive σ or π-hole on the Lewis acid, strong triel bonds can be formed with either base. The complexation involves an internal restructuring of the tetrahedral TrCl 4 − monomer into a trigonal bipyramid shape, where the base can occupy either an axial or equatorial position. Although this rearrangement requires a substantial investment of energy, it aids the complexation by imparting a much more positive MEP to the site that is to be occupied by the base. Complexation with the neutral base is exothermic in the gas phase and even more so in water where interaction energies can exceed 30 kcal mol −1 . Despite the long-range coulombic repulsion between any pair of anions, CN − can also engage in a strong triel bond with TrCl 4 − . In the gas phase, complexation is endothermic, but dissociation of the metastable dimer is obstructed by an energy barrier. The situation is entirely different in solution, with large negative interaction energies of as much as −50 kcal mol −1 . The complexation remains an exothermic process even after the large monomer deformation energy is factored in. 
    more » « less
  2. The direct chlorination, bromination and azidation of beta keto esters, 2-acetyl-1-tetralone and methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate is achieved utilizing anion-coordinated hypervalent iodine benziodazoles derived from hypervalent iodine macrocycles. This reaction, which introduces the halogen, azido or cyano group at the alpha carbon atom of beta keto esters, is accomplished in chloroform at 60 °C and results in the formation of a chiral center. Depending on the structure of the benziodazole reagent, the reaction can have mild enantioselectivity. The reaction between 2-acetyl-1-tetralone and phenylalanine-derived hypervalent iodine benziodazoles results in the chlorinated product with 26% enantiomeric excess. 
    more » « less
  3. The ability of two anions to interact with one another is tested in the context of pairs of TrX 4 − homodimers, where Tr represents any of the triel atoms B, Al, Ga, In, or Tl, and X refers to a halogen substituent F, Cl, or Br. None of these pairs engage in a stable complex in the gas phase, but the situation reverses in water where the two monomers are held together by Tr⋯X triel bonds, complemented by stabilizing interactions between X atoms. Some of these bonds are quite strong, notably those involving TrF 4 − , with interaction energies surpassing 30 kcal mol −1 . Others are very much weaker, with scarcely exothermic binding energies. The highly repulsive electrostatic interactions are counteracted by large polarization energies. 
    more » « less
  4. Abstract Planar (HgCl3)anions are stacked fairly closely together in a slipped parallel arrangement within several crystal structures. Quantum chemical analysis shows evidence of strong noncovalent spodium bonds between the Hgπ‐hole of one unit and the Cl atom of an adjacent unit. Anion⋅⋅⋅anion spodium bonds work in tandem with crystal packing forces. 
    more » « less