Reconnaissance is critical for adversaries to prepare attacks causing physical damage in industrial control systems (ICS) like smart power grids. Disrupting reconnaissance is challenging. The state-of-the-art moving target defense (MTD) techniques based on mimicking and simulating system behaviors do not consider the physical infrastructure of power grids and can be easily identified. To overcome these challenges, we propose physical function virtualization (PFV) that “hooks” network interactions with real physical devices and uses these real devices to build lightweight virtual nodes that follow the actual implementation of network stacks, system invariants, and physical state variations in the real devices. On top of PFV, we propose DefRec, a defense mechanism that significantly increases the effort required for an adversary to infer the knowledge of power grids’ cyber-physical infrastructures. By randomizing communications and crafting decoy data for virtual nodes, DefRec can mislead adversaries into designing damage-free attacks. We implement PFV and DefRec in the ONOS network operating system and evaluate them in a cyber-physical testbed, using real devices from different vendors and HP physical switches to simulate six power grids. The experimental results show that with negligible overhead, PFV can accurately follow the behavior of real devices. DefRec can delay adversaries’ reconnaissance for more than 100 years by adding a number of virtual nodes less than or equal to 20% of the number of real devices.
more »
« less
A Covert System Identification Attack on Constant Setpoint Control Systems
Industrial Control Systems (ICS) are the brain and backbone of nation's critical infrastructure such as nuclear power, water treatment, and petrochemical plants. In order to increase interoperability, real-time availability of data, and flexibility, information/communication technologies are adopted in this domain. While these information technologies have been effective, they are integrated into operational technologies without the necessary security defense. Designing an effective, layered security defense is not possible unless security threats are identified through a structural analysis of the ICS. For that reason, this paper provides an attacker's point of view on the reconnaissance effort necessary to gather details of the system dynamics - which are required for the development of sophisticated attacks. We present a reconnaissance approach which uses the system's I/O data to infer the dynamic model of the system. In this effort, we propose a novel cyber-attack which targets the controller proportional-integral-derivative gain values in a constant setpoint control system. Our findings will help researchers design more secure control systems.
more »
« less
- Award ID(s):
- 1846493
- PAR ID:
- 10147987
- Date Published:
- Journal Name:
- 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW)
- Page Range / eLocation ID:
- 367 to 373
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reconnaissance is critical for adversaries to prepare attacks causing physical damage in industrial control systems (ICS) like smart power grids. Disrupting the reconnaissance is challenging. The state-of-the-art moving target defense (MTD) techniques based on mimicking and simulating system behaviors do not consider the physical infrastructure of power grids and can be easily identified. To overcome those challenges, we propose physical function virtualization (PFV) that ``hooks'' network interactions with real physical devices and uses them to build lightweight virtual nodes following the actual implementation of network stacks, system invariants, and physical state variations of real devices. On top of PFV, we propose DefRec, a defense mechanism that significantly increases the reconnaissance efforts for adversaries to obtain the knowledge of power grids' cyber-physical infrastructures. By randomizing communications and crafting decoy data for the virtual physical nodes, DefRec can mislead adversaries into designing damage-free attacks. We implement PFV and DefRec in the ONOS network operating system and evaluate them in a cyber-physical testbed, which uses real devices from different vendors and HP physical switches to simulate six power grids. The experiment results show that with negligible overhead, PFV can accurately follow the behavior of real devices. DefRec can significantly delay passive attacks for at least five months and isolate proactive attacks with less than $$10^{-30}$$ false negatives.more » « less
-
Industrial control systems (ICS) are systems used in critical infrastructures for supervisory control, data acquisition, and industrial automation. ICS systems have complex, component-based architectures with many different hardware, software, and human factors interacting in real time. Despite the importance of security concerns in industrial control systems, there has not been a comprehensive study that examined common security architectural weaknesses in this domain. Therefore, this paper presents the first in-depth analysis of 988 vulnerability advisory reports for Industrial Control Systems developed by 277 vendors. We performed a detailed analysis of the vulnerability reports to measure which components of ICS have been affected the most by known vulnerabilities, which security tactics were affected most often in ICS and what are the common architectural security weaknesses in these systems. Our key findings were: (1) Human-Machine Interfaces, SCADA configurations, and PLCs were the most affected components, (2) 62.86% of vulnerability disclosures in ICS had an architectural root cause, (3) the most common architectural weaknesses were “Improper Input Validation”, followed by “Im-proper Neutralization of Input During Web Page Generation” and “Improper Authentication”, and (4) most tactic-related vulnerabilities were related to the tactics “Validate Inputs”, “Authenticate Actors” and “Authorize Actors”.more » « less
-
Safety and security are the two most important properties of industrial control systems (ICS), and their integration is necessary to ensure that safety goals do not undermine security goals and vice versa. Sometimes, safety and security co-engineering leads to conflicting requirements or violations capable of impacting the normal behavior of the system. Identification, analysis, and resolution of conflicts arising from safety and security co-engineering is a major challenge, an under-researched area in safety-critical systems(ICS). This paper presents an STPA-SafeSec-CDCL approach that addresses the challenge. Our proposed methodology combines the STPA-SafeSec approach for safety and security analysis and the Conflict-Driven Clause Learning (CDCL) approach for the identification, analysis, and resolution of conflicts where conflicting constraints are encoded in satisfiability (SAT) problems. We apply our framework to the Tennessee Eastman Plant process model, a chemical process model developed specifically for the study of industrial control processes, to demonstrate how to use the proposed method. Our methodology goes beyond the requirement analysis phase and can be applied to the early stages of system design and development to increase system reliability, robustness, and resilience.more » « less
-
Connected vehicle (CV) technologies enable data exchange between vehicles and transportation infrastructure. In a CV environment, traffic signal control systems receive CV trajectory data through vehicle-to-infrastructure (V2I) communications to make control decisions. Comparing with existing data collection methods (e.g., from loop-detectors), the CV trajectory data provide much richer information, and therefore have great potentials to improve the system performance by reducing total vehicle delay at signalized intersections. However, this connectivity might also bring cyber security concerns. In this paper, we aim to investigate the security problem of CV-based traffic signal control (CV-TSC) systems. Specifically, we focus on evaluating the impact of falsified data attacks on the system performance. A black-box attack scenario, in which the control logic of a CV-TSC system is unavailable to attackers, is considered. A two-step attack model is constructed. In the first step, the attacker tries to learn the control logic using a surrogate model. Based on the surrogate model, in the second step, the attacker launches falsified data attacks to influence the control systems to make sub-optimal control decisions. In the case study, we apply the attack model to an existing CV-TSC system (i.e., I-SIG) and find intersection delay can be significantly increased. Finally, we discuss some promising defense directions.more » « less
An official website of the United States government

