Incremental Task learning (ITL) is a category of continual learning that seeks to train a single network for multiple tasks (one after another), where training data for each task is only available during the training of that task. Neural networks tend to forget older tasks when they are trained for the newer tasks; this property is often known as catastrophic forgetting. To address this issue, ITL methods use episodic memory, parameter regularization, masking and pruning, or extensible network structures. In this paper, we propose a new incremental task learning framework based on low-rank factorization. In particular, we represent the network weights for each layer as a linear combination of several rank-1 matrices. To update the network for a new task, we learn a rank-1 (or low-rank) matrix and add that to the weights of every layer. We also introduce an additional selector vector that assigns different weights to the low-rank matrices learned for the previous tasks. We show that our approach performs better than the current state-of-the-art methods in terms of accuracy and forgetting. Our method also offers better memory efficiency compared to episodic memory- and mask-based approaches. Our code will be available at https://github.com/CSIPlab/task-increment-rank-update.git
more »
« less
Convergence Rate of Incremental Gradient and Incremental Newton Methods
More Like this
-
-
Recent private information retrieval (PIR) schemes preprocess the database with a query-independent offline phase in order to achieve sublinear computation during a query-specific online phase. These offline/online protocols expand the set of applications that can profitably use PIR, but they make a critical assumption: that the database is immutable. In the presence of changes such as additions, deletions, or updates, existing schemes must preprocess the database from scratch, wasting prior effort. To address this, we introduce incremental preprocessing for offline/online PIR schemes, allowing the original preprocessing to continue to be used after database changes, while incurring an update cost proportional to the number of changes rather than the size of the database. We adapt two offline/online PIR schemes to use incremental preprocessing and show how it significantly improves the throughput and reduces the latency of applications where the database changes over timemore » « less
An official website of the United States government

