skip to main content


Title: REVEALING THE DECISION-MAKING PROCESSES OF CHEMICAL ENGINEERING STUDENTS IN PROCESS SAFETY CONTEXTS
This paper provides an overview of the general process and types of informal reasoning that undergraduate chemical engineering students use when approaching hypothetical process safety decisions.  more » « less
Award ID(s):
1711376
NSF-PAR ID:
10148430
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical engineering education
Volume:
54
Issue:
1
ISSN:
2165-6428
Page Range / eLocation ID:
22-30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research paper focuses on comparing engineering students’ beliefs and behaviors related to making process safety judgements. Despite emphasis on process safety education, serious health and safety accidents in the chemical process industry continue to occur. Investigations of major incidents have reported that, in many cases, tension caused by the need to balance several competing criteria was the culprit. While there have been substantial improvements in process safety education, most efforts have focused on preventing incidents through safer design, while few have focused on making process safety judgements in situations that have competing criteria. This pilot study investigates (1) what are engineering students’ beliefs about how they would approach process safety judgements with competing criteria? and (2) how do students react to the process of comparing their beliefs and behaviors in process safety judgements? We interviewed three chemical engineering students to determine their beliefs about making judgements in process safety contexts with competing criteria. Next, the students played through a digital process safety game, Contents Under Pressure (CUP). In CUP, students make process safety judgements in a digital chemical plant setting, and the judgements they encounter include a variety of criteria juxtapositions. Upon completing CUP, students were asked to reflect on their criteria priorities as they believed they played CUP through an online survey. GAP Profiles were generated as a way to directly compare initial beliefs, gameplay, and reflection criteria priorities. Finally, students reconciled differences between their beliefs and behaviors through a semi-structured interview, prompting students to think about the cause of the observed differences. In the initial beliefs interviews, we identified themes tied to prioritization of competing criteria. Some students rationalized their prioritizations by aligning them with their perceived priorities of the company, while others overcomplicated proposed hypotheticals in an attempt to find an optimized outcome. None of the participants could understand the link between process safety judgements and relationships, so they tended to devalue this criterion in their prioritizations. After playing CUP, the students communicated a better awareness of how relationships influence process safety judgements. Following gameplay, all participants stated that in-game feedback was critical to the ways in which they made judgements during CUP. Some participants indicated that their behaviors in CUP were more representative of the way they would approach process safety judgements in real life than their responses in the initial interview. This result may suggest that students have difficulty accurately predicting how they will apply process safety criteria in judgements without practicing these priorities in context. Results of this pilot study indicate that using a game-based approach to practice judgements with competing criteria gives students an opportunity to gain awareness about their approaches to process safety judgements and any differences that exist with their formulated beliefs. 
    more » « less
  2. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year. 
    more » « less
  3. This research paper focuses on comparing engineering students’ beliefs and behaviors related to making process safety judgements. Despite emphasis on process safety education, serious health and safety accidents in the chemical process industry continue to occur. Investigations of major incidents have reported that, in many cases, tension caused by the need to balance several competing criteria was the culprit. While there have been substantial improvements in process safety education, most efforts have focused on preventing incidents through safer design, while few have focused on making process safety judgements in situations that have competing criteria. This pilot study investigates (1) what are engineering students’ beliefs about how they would approach process safety judgements with competing criteria? and (2) what are students’ responses to differences between their beliefs and behaviors in process safety judgements with competing criteria? We interviewed three chemical engineering students to determine their beliefs about making judgements in process safety contexts with competing criteria. Next, the students played through a digital process safety game, Contents Under Pressure (CUP). In CUP, students make process safety judgements in a digital chemical plant setting, and the judgements they encounter include a variety of criteria juxtapositions. Upon completing CUP, students were asked to reflect on their criteria priorities as they believed they played CUP through an online survey. GAP Profiles were generated as a way to directly compare initial beliefs, gameplay, and reflection criteria priorities. Finally, students reconciled differences between their beliefs and behaviors through a semi-structured interview, prompting students to think about the cause of the observed differences. In the initial beliefs interviews, we identified themes tied to prioritization of competing criteria. Some students rationalized their prioritizations by aligning them with their perceived priorities of the company, while others overcomplicated proposed hypotheticals in an attempt to find an optimized outcome. None of the participants could understand the link between process safety judgements and relationships, so they tended to devalue this criterion in their prioritizations. After playing CUP, the students communicated a better awareness of how relationships influence process safety judgements. Following gameplay, all participants stated that in-game feedback was critical to the ways in which they made judgements during CUP. Some participants indicated that their behaviors in CUP were more representative of the way they would approach process safety judgements in real life than their responses in the initial interview. This result may suggest that students have difficulty accurately predicting how they will apply process safety criteria in judgements without practicing these priorities in context. Results of this pilot study indicate that using a game-based approach to practice judgements with competing criteria gives students an opportunity to gain awareness about their approaches to process safety judgements and any differences that exist with their formulated beliefs. 
    more » « less
  4. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year. 
    more » « less
  5. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year. 
    more » « less