skip to main content


Title: Theorizing Process Dynamics with Directed Graphs: A Diachronic Analysis of Digital Trace Data
The growing availability of digital trace data has generated unprecedented opportunities for analyzing, explaining, and predicting the dynamics of process change. While research on process organization studies theorizes about process and change, and research on process mining rigorously measures and models business processes, there has so far been limited research that measures and theorizes about process dynamics. This gap represents an opportunity for new information systems research. This research note lays the foundation for such an endeavor by demonstrating the use of process mining for diachronic analysis of process dynamics. We detail the definitions, assumptions, and mechanics of an approach that is based on representing processes as weighted, directed graphs. Using this representation, we offer a precise definition of process dynamics that focuses attention on describing and measuring changes in process structure over time. We analyze process structure over two years at four dermatology clinics. Our analysis reveals process changes that were invisible to the medical staff in the clinics. This approach offers empirical insights that are relevant to many theoretical perspectives on process dynamics.  more » « less
Award ID(s):
1734237
NSF-PAR ID:
10302041
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
MIS Quarterly
Volume:
45
Issue:
2
ISSN:
0276-7783
Page Range / eLocation ID:
967 to 984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Who and by what means do we ensure that engineering education evolves to meet the ever changing needs of our society? This and other papers presented by our research team at this conference offer our initial set of findings from an NSF sponsored collaborative study on engineering education reform. Organized around the notion of higher education governance and the practice of educational reform, our open-ended study is based on conducting semi-structured interviews at over three dozen universities and engineering professional societies and organizations, along with a handful of scholars engaged in engineering education research. Organized as a multi-site, multi-scale study, our goal is to document differences in perspectives and interest the exist across organizational levels and institutions, and to describe the coordination that occurs (or fails to occur) in engineering education given the distributed structure of the engineering profession. This paper offers for all engineering educators and administrators a qualitative and retrospective analysis of ABET EC 2000 and its implementation. The paper opens with a historical background on the Engineers Council for Professional Development (ECPD) and engineering accreditation; the rise of quantitative standards during the 1950s as a result of the push to implement an engineering science curriculum appropriate to the Cold War era; EC 2000 and its call for greater emphasis on professional skill sets amidst concerns about US manufacturing productivity and national competitiveness; the development of outcomes assessment and its implementation; and the successive negotiations about assessment practice and the training of both of program evaluators and assessment coordinators for the degree programs undergoing evaluation. It was these negotiations and the evolving practice of assessment that resulted in the latest set of changes in ABET engineering accreditation criteria (“1-7” versus “a-k”). To provide an insight into the origins of EC 2000, the “Gang of Six,” consisting of a group of individuals loyal to ABET who used the pressure exerted by external organizations, along with a shared rhetoric of national competitiveness to forge a common vision organized around the expanded emphasis on professional skill sets. It was also significant that the Gang of Six was aware of the fact that the regional accreditation agencies were already contemplating a shift towards outcomes assessment; several also had a background in industrial engineering. However, this resulted in an assessment protocol for EC 2000 that remained ambiguous about whether the stated learning outcomes (Criterion 3) was something faculty had to demonstrate for all of their students, or whether EC 2000’s main emphasis was continuous improvement. When it proved difficult to demonstrate learning outcomes on the part of all students, ABET itself began to place greater emphasis on total quality management and continuous process improvement (TQM/CPI). This gave institutions an opening to begin using increasingly limited and proximate measures for the “a-k” student outcomes as evidence of effort and improvement. In what social scientific terms would be described as “tactical” resistance to perceived oppressive structures, this enabled ABET coordinators and the faculty in charge of degree programs, many of whom had their own internal improvement processes, to begin referring to the a-k criteria as “difficult to achieve” and “ambiguous,” which they sometimes were. Inconsistencies in evaluation outcomes enabled those most discontented with the a-k student outcomes to use ABET’s own organizational processes to drive the latest revisions to EAC accreditation criteria, although the organization’s own process for member and stakeholder input ultimately restored much of the professional skill sets found in the original EC 2000 criteria. Other refinements were also made to the standard, including a new emphasis on diversity. This said, many within our interview population believe that EC 2000 had already achieved much of the changes it set out to achieve, especially with regards to broader professional skills such as communication, teamwork, and design. Regular faculty review of curricula is now also a more routine part of the engineering education landscape. While programs vary in their engagement with ABET, there are many who are skeptical about whether the new criteria will produce further improvements to their programs, with many arguing that their own internal processes are now the primary drivers for change. 
    more » « less
  2. This research paper analyzes the emotions that students experience while completing ill-defined complex problems called Open-Ended Modeling Problems in their engineering courses. Students are asked to make their own modeling decisions, rather than being given those assumptions, as is the case in most textbook problems. There are many approaches they can take, and having to make decisions and assumptions that impact the problem has been found to generate strong emotions. Goldin’s research on mathematics education asserts that students tend toward affective pathways while completing problems. An affective pathway is the sequence of emotions that a student goes through while solving a problem. Goldin theorizes that there are two main categories of affective pathways that students fall into: positive pathways and negative pathways. This paper builds on our previous work on the development of a survey instrument to quantitatively measure affective pathways. The survey asked students to drag and drop emotions into the order they experienced them during their problem solving process. In this study, we sought to improve upon our survey instrument. Based on our previous research, we added several emotions and alphabetized the list to see whether the order of words impacted the responses. Here, we examine the results from an updated survey question as well as a small set of interviews conducted to investigate how students approach answering the survey question by having them think aloud while completing it. The survey was sent to six classes at five universities, and interviews were conducted with six students at two of those universities. Through our analysis, we found that most students feel confused or frustrated at some stage, and that their emotions change as they continue from start to finish, which is in line with the findings of the previous version of the survey instrument. We are looking further into whether the students turned their frustrations into the positive or negative pathways that Goldin describes. From the interviews, we found most of the verbalized pathways matched what was submitted through the survey instrument. However, there were instances where the submitted and verbalized pathway did not match, suggesting further changes to the question’s implementation. Developing a reliable method for measuring affective pathways will enable future study of why and when positive or negative pathways occur, as well as potential actions that engineering educators can take to help students interrupt negative pathways. Goldin’s work suggests that negative pathways influence students’ global affect, which could impact retention in engineering. 
    more » « less
  3. null (Ed.)
    Using data from the audit trail of an electronic medical record system, we examine the effects of a disruption on the clinical documentation process. We use process mining to construct a network that describes the process and then we use a latent factor selection model to analyze changes to that network. Rather than attempting to discover a particular process model, our goal is to identify theory-based factors that explain change and stability in the overall pattern of actions. We conduct the analysis at two levels of granularity and we compare time periods with and without disruption. The paper contributes to current research on routine dynamics as network dy-namics by demonstrating the use of network science to predict the structure of an organizational routine. 
    more » « less
  4. Abstract

    Most empirical and modeling research on soil carbon (C) dynamics has focused on those processes that control and promote C stabilization. However, we lack a strong, generalizable understanding of the mechanisms through which soil organic carbon (SOC) is destabilized in soils. Yet a clear understanding of C destabilization processes in soil is needed to quantify the feedbacks of the soil C cycle to the Earth system. Destabilization includes processes that occur along a spectrum through which SOC shifts from a ‘protected’ state to an ‘available’ state to microbial cells where it can be mineralized to gaseous forms or to soluble forms that are then lost from the soil system. These processes fall into three general categories: (1) release from physical occlusion through processes such as tillage, bioturbation, or freeze-thaw and wetting-drying cycles; (2) C desorption from soil solids and colloids; and (3) increased C metabolism. Many processes that stabilize soil C can also destabilize C, and C gain or loss depends on the balance between competing reactions. For example, earthworms may both destabilize C through aggregate destruction, but may also create new aggregates and redistribute C into mineral horizon. Similarly, mycorrhizae and roots form new soil C but may also destabilize old soil C through priming and promoting microbial mining; labile C inputs cause C stabilization through increased carbon use efficiency or may fuel priming. Changes to the soil environment that affect the solubility of minerals or change the relative surfaces charges of minerals can destabilize SOC, including increased pH or in the reductive dissolution of Fe-bearing minerals. By considering these different physical, chemical, and biological controls as processes that contribute to soil C destabilization, we can develop thoughtful new hypotheses about the persistence and vulnerability of C in soils and make more accurate and robust predictions of soil C cycling in a changing environment.

     
    more » « less
  5. Abstract

    Ecosystems are changing in complex and unpredictable ways, and analysis of these changes is facilitated by coordinated, long‐term research. Meeting diverse societal needs requires an understanding of what populations and communities will be dominant in 20, 50, and 100 yr. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of populations and communities. This analysis revealed that each LTER site had at least one compelling story about what their site would look like in 50 or 100 yr. As the stories were prepared, themes emerged, and the stories were grouped into papers along five themes for this special issue: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the resilience theme and includes stories from the Baltimore (urban), Hubbard Brook (northern hardwood forest), Andrews (temperate rain forest), Moorea (coral reef), Cedar Creek (grassland), and North Temperate Lakes (lakes) sites. The concept of resilience (the capacity of a system to maintain structure and processes in the face of disturbance) is an old topic that has seen a resurgence of interest as the nature and extent of global environmental change have intensified. The stories we present here show the power of long‐term manipulation experiments (Cedar Creek), the value of long‐term monitoring of forests in both natural (Andrews, Hubbard Brook) and urban settings (Baltimore), and insights that can be gained from modeling and/or experimental approaches paired with long‐term observations (North Temperate Lakes, Moorea). Three main conclusions emerge from the analysis: (1) Resilience research has matured over the past 40 yr of the LTER program; (2) there are many examples of high resilience among the ecosystems in the LTER network; (3) there are also many warning signs of declining resilience of the ecosystems we study. These stories highlight the need for long‐term studies to address this complex topic and show how the diversity of sites within the LTER network facilitates the emergence of overarching concepts about this important driver of ecosystem structure, function, services, and futures.

     
    more » « less