skip to main content


Title: Stribeck Curve Analysis of Temporomandibular Joint Condylar Cartilage and Disc
Abstract Temporomandibular joint (TMJ) diseases such as osteoarthritis and disc displacement have no permanent treatment options, but lubrication therapies, used in other joints, could be an effective alternative. However, the healthy TMJ contains fibrocartilage, not hyaline cartilage as is found in other joints. As such, the effect of lubrication therapies in the TMJ is unknown. Additionally, only a few studies have characterized the friction coefficient of the healthy TMJ. Like other cartilaginous tissues, the mandibular condyles and discs are subject to changes in friction coefficient due to fluid pressurization. In addition, the friction coefficients of the inferior joint space of the TMJ are affected by the sliding direction and anatomic location. However, these previous findings have not been able to identify how all three of these parameters (anatomic location, sliding direction, and fluid pressurization) influence changes in friction coefficient. This study used Stribeck curves to identify differences in the friction coefficients of mandibular condyles and discs based on anatomic location, sliding direction, and amount of fluid pressurization (friction mode). Friction coefficients were measured using a cartilage on glass tribometer. Both mandibular condyle and disc friction coefficients were well described by Stribeck curves (R2 range 0.87–0.97; p < 0.0001). These curves changed based on anatomic location (Δμ ∼ 0.05), but very few differences in friction coefficients were observed based on sliding direction. Mandibular condyles had similar boundary mode and elastoviscous mode friction coefficients to the TMJ disc (μmin ∼ 0.009 to 0.19) and both were lower than hyaline cartilage in other joints (e.g., knee, ankle, etc.). The observed differences here indicate that the surface characteristics of each anatomic region cause differences in friction coefficients.  more » « less
Award ID(s):
1719875
NSF-PAR ID:
10148492
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
141
Issue:
12
ISSN:
0148-0731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structured Abstract Objectives

    To investigate the ploughing mechanism associated with tractional force formation on the temporomandibular joint (TMJ) disc surface.

    Setting and Sample Population

    Ten leftTMJdiscs were harvested from 6‐ to 8‐month‐old male Yorkshire pigs.

    Materials and Methods

    Confined compression tests characterized mechanicalTMJdisc properties, which were incorporated into a biphasic finite element model (FEM). TheFEMwas established to investigate load carriage within the extracellular matrix (ECM) and the ploughing mechanism during tractional force formation by simulating previous in vitro plough experiments.

    Results

    Biphasic mechanical properties were determined in fiveTMJdisc regions (average±standard deviation for aggregate modulus: 0.077±0.040MPa; hydraulic permeability: 0.88±0.37×10−3mm4/Ns).FEsimulation results demonstrated that interstitial fluid pressurization is a dominant loading support mechanism in theTMJdisc. Increased contact load and duration led to increased solidECMstrain and stress within, and increased ploughing force on the surface of the disc.

    Conclusion

    Sustained mechanical loading may play a role in load carriage within theECMand ploughing force formation during stress‐field translation at the condyle–disc interface. This study further elucidated the mechanism of ploughing on tractional force formation and provided a baseline for future analysis ofTMJmechanics, cartilage fatigue and earlyTMJdegeneration.

     
    more » « less
  2. Interactions between molecules in the synovial fluid and the cartilage surface may play a vital role in the formation of adsorbed films that contribute to the low friction of cartilage boundary lubrication. Osteoarthritis (OA) is the most common degenerative joint disease. Previous studies have shown that in OA-diseased joints, hyaluronan (HA) not only breaks down resulting in a much lower molecular weight (MW), but also its concentration is reduced ten times. Here, we have investigated the structural changes of lipid-HA complexes as a function of HA concentration and MW to simulate the physiologically relevant conditions that exist in healthy and diseased joints. Small angle neutron scattering and dynamic light scattering were used to determine the structure of HA-lipid vesicles in bulk solution, while a combination of atomic force microscopy and quartz crystal microbalance was applied to study their assembly on a gold surface. We infer a significant influence of both MW and HA concentrations on the structure of HA-lipid complexes in bulk and assembled on a gold surface. Our results suggest that low MW HA cannot form an amorphous layer on the gold surface, which is expected to negatively impact the mechanical integrity and longevity of the boundary layer and could contribute to the increased wear of the cartilage that has been reported in joints diseased with OA. 
    more » « less
  3. ABSTRACT  
    more » « less
  4. We report the design of a diblock copolymer with architecture and function inspired by the lubricating glycoprotein lubricin. This diblock copolymer, synthesized by sequential reversible addition–fragmentation chain-transfer polymerization, consists of a cationic cartilage-binding domain and a brush-lubricating domain. It reduces the coefficient of friction of articular cartilage under boundary mode conditions (0.088 ± 0.039) to a level equivalent to that provided by lubricin (0.093 ± 0.011). Additionally, both the EC 50 (0.404 mg/mL) and cartilage-binding time constant (7.19 min) of the polymer are comparable to purified human and recombinant lubricin. Like lubricin, the tribological properties of this polymer are dependent on molecular architecture. When the same monomer composition was evaluated either as an AB diblock copolymer or as a random copolymer, the diblock effectively lubricated cartilage under boundary mode conditions whereas the random copolymer did not. Additionally, the individual polymer blocks did not lubricate independently, and lubrication could be competitively inhibited with an excess of binding domain. This diblock copolymer is an example of a synthetic polymer with lubrication properties equal to lubricin under boundary mode conditions, suggesting its potential utility as a therapy for joint pathologies like osteoarthritis. 
    more » « less
  5. Joint disorders can be detrimental to quality of life. There is an unmet need for precise functional reconstruction of native-like cartilage and bone tissues in the craniofacial space and particularly for the temporomandibular joint (TMJ). Current surgical methods suffer from lack of precision and comorbidities and frequently involve multiple operations. Studies have sought to improve craniofacial bone grafts without addressing the cartilage, which is essential to TMJ function. For the human-sized TMJ in the Yucatan minipig model, we engineered autologous, biologically, and anatomically matched cartilage-bone grafts for repairing the ramus-condyle unit (RCU), a geometrically intricate structure subjected to complex loading forces. Using image-guided micromilling, anatomically precise scaffolds were created from decellularized bone matrix and infused with autologous adipose-derived chondrogenic and osteogenic progenitor cells. The resulting constructs were cultured in a dual perfusion bioreactor for 5 weeks before implantation. Six months after implantation, the bioengineered RCUs maintained their predefined anatomical structure and regenerated full-thickness, stratified, and mechanically robust cartilage over the underlying bone, to a greater extent than either autologous bone-only engineered grafts or acellular scaffolds. Tracking of implanted cells and parallel bioreactor studies enabled additional insights into the progression of cartilage and bone regeneration. This study demonstrates the feasibility of TMJ regeneration using anatomically precise, autologous, living cartilage-bone grafts for functional, personalized total joint replacement. Inclusion of the adjacent tissues such as soft connective tissues and the TMJ disc could further extend the functional integration of engineered RCUs with the host.

     
    more » « less