skip to main content


Title: Technical Training: Smart Manufacturing For America’s Revolutionizing Technological Transformation (SMARTT)
In this project, the following products were produced as a result of this project: Smart Manufacturing training workshops Online Educational modules on Smart Manufacturing Industrial speaker short talks that present the State-of-the-art Industrial Applications Peer-reviewed articles were produced. High school and Middle School visits In the hands-on training, we demonstrated the use of code-programmed drones in technical education and Smart Manufacturing (SM). Unmanned aerial and ground vehicle technologies are increasingly finding applications in industrial settings. Training on SM is achieved by using coded drones, with educational modules and a database of technologies and their applications.  more » « less
Award ID(s):
1801120
NSF-PAR ID:
10149376
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
NSF ATE National Conference, Washington, DC October 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The necessity for educational programs in advanced manufacturing became prominent during the economic crisis in 2007 when the demand of industrial plants was for already trained highly-skilled laborers. To respond to this demand, many advanced manufacturing educational pro-grams, such as mechatronics, were developed in community and technical colleges. Since it was officially defined in the United States Congress in 2015, Smart Manufacturing (SM) has increasingly been under the spotlight. However, current efforts in deploying SM technologies in the US do not provide a workforce trained to utilize and perform SM technologies and techniques. Graduates of mechatronics and other advanced manufacturing programs remain mostly unaware of the technologies of Smart Manufacturing, such as Internet of Things (IoT) and Cyber Physical Systems (CPS), Industry 4.0 standards, and the capacity and range of applications of additive manufacturing and high-precision subtractive manufacturing technologies from tooling to end-user products. The programs currently available do not provide workforce training on SM technologies that target community and technical colleges, which supply a significant percentage of the industrial workforce. In the project Smart Manufacturing for America’s Revolutionizing Technological Transformation (SMART2), this gap in workforce training is met by providing the needed training to career technical education (CTE) and STEM educators in mechatronics and engineering technology. This project is a collaborative effort among three institutions and provides professional training for faculty of advanced manufacturing education programs and an online knowledge-base platform for educators and manufacturers, as well as on-ground training work-shops and educational modules. 
    more » « less
  2. Recently, drones have become a useful tool in training and practicing the core of industry 4.0 for applications ranging from machine diagnostics to surveillance and detection of air leaks. In this work, train-the-trainer workshops were organized to train primarily STEM educators from Two-year higher education and secondary education institutions on Smart Manufacturing (SM) technologies. The hands-on activities during these workshops included assembling and coding drones. Four workshops were held between 2019 and 2021 with 114 participants from 20 states across the United States. The workshops included research, industry speakers, and hands-on activities with assembling and coding drones with Arduino, Python, or Blockly. The effectiveness of using drones for training in SM workshops was evaluated using retrospective surveys. Most participants reported that their knowledge of coding and smart manufacturing increased and that the knowledge gained from the workshops is applicable to their work. In addition, using statistical tools, 7,182 students ± 1,903 were exposed to the smart manufacturing concepts using drones six months after the workshops with a confidence level of 90%. 
    more » « less
  3. The emerging convergence research emphasizes integrating knowledge, methods, and expertise from different disciplines and forming novel frameworks to catalyze scientific discovery and innovation, not only multidisciplinary, but interdisciplinary and further transdisciplinary. Mechatronics matches this new trend of convergence engineering research for deep integration across disciplines such as mechanics, electronics, control theory, robotics, and production manufacturing, and is also inspired by its active means of addressing a specific challenge or opportunity for societal needs. The most current applications of mechatronics in automotive are e-mobility (electric vehicles, EV) and connected and autonomous vehicles (CAV); in manufacturing are robotics and smart-factory; and in aerospace are drones, unmanned aerial vehicle (UAV), and advanced avionics. The growing mechatronics industries demand high quality workforces with multidiscipline knowledge and training. These workforces can come from the graduates of colleges and universities with updated curricula, or from labors returning to schools or taking new training programs. Graduate schools can prepare higher level workforces that can carry out fundamental research and explore new technologies in mechatronics. K-12 schools will also play an important role in fostering the next-decade workforces for all the STEM area. On the other hand, the development of mechatronics technologies improves the tools for teaching mechatronics as well. These new teaching tools include affordable microcontrollers and the peripherals such as Arduinos, and Raspberry Pi, desktop 3D printers, and virtual reality (VR). In this paper we present the working processes and activities of a current one-year ECR project funded by NSF organizing two workshops held by two institutes for improving workforce development environments specified in mechatronics. Each workshop is planned to be two days, where the first day will be dedicated to the topics of the current workforce situation in industry, the current pathways for workforces, conventional college and university workforce training, and K-12 STEM education preparation in mechatronics. The topics in the second day will be slightly different based on the expertise and locations of the two institutes. One will focus on the mechatronics technologies in production engineering for alternative energy and ground mobility, and the other will concentrate on aerospace, alternative energy, and the corresponding applications. Both workshops will also address the current technical development of teaching methods and tools for mechatronics. VR will be specially emphasized and demonstrated in the workshops if the facilities allow. Social impacts of mechatronics technology, expansion of diversity and participation of underrepresented groups will be discussed in the workshops. We expect to have the results of the workshops to present in the annual ASEE conference in June. 
    more » « less
  4. The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project. 
    more » « less
  5. The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project. 
    more » « less