In this project, the following products were produced as a result of this project: Smart Manufacturing training workshops Online Educational modules on Smart Manufacturing Industrial speaker short talks that present the State-of-the-art Industrial Applications Peer-reviewed articles were produced. High school and Middle School visits In the hands-on training, we demonstrated the use of code-programmed drones in technical education and Smart Manufacturing (SM). Unmanned aerial and ground vehicle technologies are increasingly finding applications in industrial settings. Training on SM is achieved by using coded drones, with educational modules and a database of technologies and their applications.
more »
« less
ASSESSMENT OF THE EFFECTIVENESS OF USING DRONES FOR SMART MANUFACTURING EDUCATION
Recently, drones have become a useful tool in training and practicing the core of industry 4.0 for applications ranging from machine diagnostics to surveillance and detection of air leaks. In this work, train-the-trainer workshops were organized to train primarily STEM educators from Two-year higher education and secondary education institutions on Smart Manufacturing (SM) technologies. The hands-on activities during these workshops included assembling and coding drones. Four workshops were held between 2019 and 2021 with 114 participants from 20 states across the United States. The workshops included research, industry speakers, and hands-on activities with assembling and coding drones with Arduino, Python, or Blockly. The effectiveness of using drones for training in SM workshops was evaluated using retrospective surveys. Most participants reported that their knowledge of coding and smart manufacturing increased and that the knowledge gained from the workshops is applicable to their work. In addition, using statistical tools, 7,182 students ± 1,903 were exposed to the smart manufacturing concepts using drones six months after the workshops with a confidence level of 90%.
more »
« less
- Award ID(s):
- 1801120
- PAR ID:
- 10337535
- Date Published:
- Journal Name:
- Journal of Advanced Technological Education
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we present the results of the evaluation conducted for six train-the-trainer workshops on intelligent industrial robotics that were organized over three years from 2021 to 2023. The workshops targeted STEM faculty of community and technical colleges and high schools. The workshops included factory tours, industry speakers, and hands-on activities on industrial robots and vision system programming. Evaluation of the effectiveness of the workshops was measured using surveys at the end of the workshops, as well as pre-and post-intervention assessments. A six-month follow-up survey was conducted to assess the impact of the workshops on students. Results show that most participants reported that their knowledge of intelligent industrial robotics increased and that the knowledge gained from the workshops is applicable to their work. In addition to that, statistical calculations show that 3,572 ± 1,286 students were impacted by the workshops six months after the workshop completion with a confidence level of 90%.more » « less
-
The necessity for educational programs in advanced manufacturing became prominent during the economic crisis in 2007 when the demand of industrial plants was for already trained highly-skilled laborers. To respond to this demand, many advanced manufacturing educational pro-grams, such as mechatronics, were developed in community and technical colleges. Since it was officially defined in the United States Congress in 2015, Smart Manufacturing (SM) has increasingly been under the spotlight. However, current efforts in deploying SM technologies in the US do not provide a workforce trained to utilize and perform SM technologies and techniques. Graduates of mechatronics and other advanced manufacturing programs remain mostly unaware of the technologies of Smart Manufacturing, such as Internet of Things (IoT) and Cyber Physical Systems (CPS), Industry 4.0 standards, and the capacity and range of applications of additive manufacturing and high-precision subtractive manufacturing technologies from tooling to end-user products. The programs currently available do not provide workforce training on SM technologies that target community and technical colleges, which supply a significant percentage of the industrial workforce. In the project Smart Manufacturing for America’s Revolutionizing Technological Transformation (SMART2), this gap in workforce training is met by providing the needed training to career technical education (CTE) and STEM educators in mechatronics and engineering technology. This project is a collaborative effort among three institutions and provides professional training for faculty of advanced manufacturing education programs and an online knowledge-base platform for educators and manufacturers, as well as on-ground training work-shops and educational modules.more » « less
-
null (Ed.)This paper reports on how institutions collaborating on Additive Manufacturing (AM) and Smart Manufacturing (SM) have been able to adapt to the COVID-19 pandemic and be able to modify their planned activities in 2020 in an effort to continue delivering quality training and education to educators across the country. The pandemic made it impossible to offer the usual on-ground workshops to STEM educators and industrial practitioners. As a workaround, the project teams offered instructional delivery via Zoom and Microsoft Teams while also providing distance learning tools online. The best practices of the delivery and pros/cons of the operations will be presented with the feedback received from the participants.more » « less
-
Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, and accreditation criteria, resulting in missed career opportunities for individuals and missed economic opportunities for industry. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted, especially in USA. To enable MRE to coalesce as a distinct and identifiable engineering field, the authors conducted four workshops on the Future of Mechatronics and Robotics Engineering (FoMRE) education at the bachelor’s degree level. The overall goal of the workshops was to improve the quality of undergraduate MRE education and to ease the adoption of teaching materials to prepare graduates with a blend of theoretical knowledge and practical hands-on skills. To realize this goal, the specific objectives were to generate enthusiasm and a sense of community among current and future MRE educators, promote diversity and inclusivity within the MRE community, identify thought leaders, and seek feedback from the community to serve as a foundation for future activities. The workshops were intended to benefit a wide range of participants including educators currently teaching or developing programs in MRE, PhD students seeking academic careers in MRE, and industry professionals desiring to shape the future workforce. Workshop activities included short presentations on sample MRE programs, breakout sessions on specific topics, and open discussion sessions. As a result of these workshops, the MRE educational community has been enlarged and engaged, with members actively contributing to the scholarship of teaching and learning. This paper presents the workshops’ formats, outcomes, results of participant surveys, and their analyses. A major outcome was identifying concept, skill, and experience inventories organized around the dimensions of foundational/practical/applications and student preparation/MRE knowledgebase. Particular attention is given to the extent to which the workshops realized the project goals, including attendee demographics, changes in participant attitudes, and development of the MRE community. The paper concludes with a summary of lessons learned and a call for future activities to shape the field.more » « less
An official website of the United States government

