Metal-fullerene compounds are characterized by significant electron transfer to the fullerene cage, giving rise to an electric dipole moment. We use the method of electrostatic beam deflection to verify whether such reactions take place within superfluid helium nanodroplets between an embedded C 60 molecule and either alkali (heliophobic) or rare-earth (heliophilic) atoms. The two cases lead to distinctly different outcomes: C 60 Na n ( n = 1–4) display no discernable dipole moment, while C 60 Yb is strongly polar. This suggests that the fullerene and small alkali clusters fail to form a charge-transfer bond in the helium matrix despite their strong van der Waals attraction. The C 60 Yb dipole moment, on the other hand, is in agreement with the value expected for an ionic complex.
more »
« less
Direct detection of polar structure formation in helium nanodroplets by beam deflection measurements
Long-range intermolecular forces are able to steer polar molecules submerged in superfluid helium nanodroplets into highly polar metastable configurations. We demonstrate that the presence of such special structures can be identified, in a direct and determinative way, by electrostatic deflection of the doped nanodroplet beam. The measurement also establishes the structures’ electric dipole moments. In consequence, the introduced approach is complementary to spectroscopic studies of low-temperature molecular assembly reactions. It is enabled by the fact that within the cold superfluid matrix the molecular dipoles become nearly completely oriented by the applied electric field. As a result, the massive (tens of thousands of helium atoms) nanodroplets undergo significant deflections. The method is illustrated here by an application to dimers and trimers of dimethyl sulfoxide (DMSO) molecules. We interpret the experimental results with ab initio theory, mapping the potential energy surface of DMSO complexes and simulating their low temperature aggregation dynamics.
more »
« less
- Award ID(s):
- 1664601
- PAR ID:
- 10149387
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 21
- Issue:
- 37
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 20764 to 20769
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnesium atoms in liquid helium have been hypothesized to form a metastable foam structure, in which a layer of helium atoms surrounds each magnesium atom, inhibiting their coalescence into a compact cluster. This conjecture is based on the weak interaction between the magnesium atoms themselves and with the helium atoms and was used to explain observations in femtosecond two-photon ionization experiments by different groups. However, this theory is incongruent with previous infrared spectroscopic observations, indicating the formation of tightly bound clusters when different atoms and molecules combine inside liquid helium. In this paper, we report the spectra (from 210 to 2210 nm) of magnesium-doped superfluid helium nanodroplets at different averaged droplet sizes and number of dopants. The measured spectra in this study are consistent with the formation of compact magnesium clusters rather than the metastable foam structure.more » « less
-
We studied luminescence accompanied an injection of the nitrogen-helium gas mixture after passing discharge into dense cold helium gas. Initially, when the experimental beaker was filled with superfluid helium and the nitrogen-helium gas was injected into bulk superfluid helium at T ≈ 1.5 K, the dominant band in the emission spectra was the α-group of nitrogen atoms. At these conditions, the nanoclusters of molecular nitrogen with high concentrations of stabilized nitrogen atoms were formed. When superfluid helium was evaporated from the beaker and the temperature at the bottom of the beaker was increased to T ≈ 20 K, we observed a drastic change in the luminescence spectra. The β-group of oxygen atoms was dominated in the luminescence spectra, and the emission of the α-group became small. At high temperatures (T ≈ 20 K), most of the nitrogen atoms recombine on the surface of N2 nanoclusters with the formation of excited nitrogen molecules. We explained the effect of the enhancement of β-group emission by effective energy transfer from excited nitrogen molecules to the stabilized impurity oxygen atom inside N2 nanoclusters.more » « less
-
Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.more » « less
-
Superfluid helium nanodroplets are unique nanomatrices for the isolation and study of transient molecular species, such as radicals, carbenes, and ions. In this work, isomers of C3H4+ were produced upon electron ionization of propyne and allene molecules and interrogated via infrared spectroscopy inside He nanodroplet matrices. It was found that the spectrum of C3H4+ has at least three distinct groups of bands. The relative intensities of the bands depend on the precursor employed and its pickup pressure, which indicates the presence of at least three different isomers. Two isomers were identified as allene and propyne radical cations. The third isomer, which has several new bands in the range of 3100–3200 cm−1, may be the elusive vinylmethylene H2C=CH–CH+ radical cation. The observed bands for the allene and propyne cations are in good agreement with the results of density functional theory calculations. However, there is only moderate agreement between the new bands and the theoretically calculated vinylmethylene spectrum, which indicates more work is necessary to unambiguously assign it.more » « less
An official website of the United States government

