skip to main content

This content will become publicly available on May 1, 2023

Title: Discovery of PSR J0523-7125 as a Circularly Polarized Variable Radio Source in the Large Magellanic Cloud
Abstract We report the discovery of a highly circularly polarized, variable, steep-spectrum pulsar in the Australian Square Kilometre Array Pathfinder (ASKAP) Variables and Slow Transients (VAST) survey. The pulsar is located about 1° from the center of the Large Magellanic Cloud, and has a significant fractional circular polarization of ∼20%. We discovered pulsations with a period of 322.5 ms, dispersion measure (DM) of 157.5 pc cm −3 , and rotation measure (RM) of +456 rad m −2 using observations from the MeerKAT and the Parkes telescopes. This DM firmly places the source, PSR J0523−7125, in the Large Magellanic Cloud (LMC). This RM is extreme compared to other pulsars in the LMC (more than twice that of the largest previously reported one). The average flux density of ∼1 mJy at 1400 MHz and ∼25 mJy at 400 MHz places it among the most luminous radio pulsars known. It likely evaded previous discovery because of its very steep radio spectrum (spectral index α ≈ −3, where S ν ∝ ν α ) and broad pulse profile (duty cycle ≳35%). We discuss implications for searches for unusual radio sources in continuum images, as well as extragalactic pulsars in the Magellanic Clouds and beyond. more » Our result highlighted the possibility of identifying pulsars, especially extreme pulsars, from radio continuum images. Future large-scale radio surveys will give us an unprecedented opportunity to discover more pulsars and potentially the most distant pulsars beyond the Magellanic Clouds. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0 × 30.0 arcsec2 and 16.3 × 15.1 arcsec2, respectively. The median root mean square (RMS) noise values are 186 $\mu$Jy beam−1 (960 MHz) and 165 $\mu$Jy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESPmore »survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies.« less
  2. Abstract We present the discovery and timing of the young (age ∼28.6 kyr) pulsar PSR J0837–2454. Based on its high latitude ( b = 98) and dispersion measure (DM = 143 pc cm −3 ), the pulsar appears to be at a z -height of >1 kpc above the Galactic plane, but near the edge of our Galaxy. This is many times the observed scale height of the canonical pulsar population, which suggests this pulsar may have been born far out of the plane. If accurate, the young age and high z -height imply that this is the first pulsar known to be born from a runaway O/B star. In follow-up imaging with the Australia Telescope Compact Array (ATCA), we detect the pulsar with a flux density S 1400 = 0.18 ± 0.05 mJy. We do not detect an obvious supernova remnant around the pulsar in our ATCA data, but we detect a colocated, low-surface-brightness region of ∼15 extent in archival Galactic and Extragalactic All-sky MWA Survey data. We also detect colocated H α emission from the Southern H α Sky Survey Atlas. Distance estimates based on these two detections come out to ∼0.9 kpc and ∼0.2 kpc, respectively, bothmore »of which are much smaller than the distance predicted by the NE2001 model (6.3 kpc) and YMW model (>25 kpc) and place the pulsar much closer to the plane of the Galaxy. If the pulsar/remnant association holds, this result also highlights the inherent difficulty in the classification of transients as “Galactic” (pulsar) or “extragalactic” (fast radio burst) toward the Galactic anticenter based solely on the modeled Galactic electron contribution to a detection.« less
  3. ABSTRACT We report the discovery of J0624–6948, a low-surface brightness radio ring, lying between the Galactic Plane and the large magellanic cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ∼196 arcsec. This source has phenomenological similarities to odd radio circles (ORCs). Significant differences to the known ORCs – a flatter radio spectral index, the lack of a prominent central galaxy as a possible host, and larger apparent size – suggest that J0624–6948 may be a different type of object. We argue that the most plausible explanation for J0624–6948 is an intergalactic supernova remnant due to a star that resided in the LMC outskirts that had undergone a single-degenerate type Ia supernova, and we are seeing its remnant expand into a rarefied, intergalactic environment. We also examine if a massive star or a white dwarf binary ejected from either galaxy could be the supernova progenitor. Finally, we consider several other hypotheses for the nature of the object, including the jets of an active galactic nucleus (30Dor) or the remnant of a nearby stellar super-flare.
  4. ABSTRACT We report on the discovery and localization of fast radio bursts (FRBs) from the MeerTRAP project, a commensal fast radio transient-detection programme at MeerKAT in South Africa. Our hybrid approach combines a coherent search with an average field-of-view (FoV) of 0.4 $\rm deg^{2}$ with an incoherent search utilizing a FoV of ∼1.27 $\rm deg^{2}$ (both at 1284 MHz). Here, we present results on the first three FRBs: FRB 20200413A (DM = 1990.05 pc cm−3), FRB 20200915A (DM = 740.65 pc cm−3), and FRB 20201123A (DM = 433.55 pc cm−3). FRB 20200413A was discovered only in the incoherent beam. FRB 20200915A (also discovered only in the incoherent beam) shows speckled emission in the dynamic spectrum, which cannot be explained by interstellar scintillation in our Galaxy or plasma lensing, and might be intrinsic to the source. FRB 20201123A shows a faint post-cursor burst of about 200 ms after the main burst and warrants further follow-up to confirm whether it is a repeating FRB. FRB 20201123A also exhibits significant temporal broadening, consistent with scattering, by a turbulent medium. The broadening exceeds from what is predicted for the medium along the sightline through our Galaxy. We associate this scattering with the turbulent medium in the environment of the FRB in the host galaxy. Within the approximately 1 arcmin localization region ofmore »FRB 20201123A, we identify one luminous galaxy (r ≈ 15.67; J173438.35-504550.4) that dominates the posterior probability for a host association. The galaxy’s measured properties are consistent with other FRB hosts with secure associations.« less
  5. Abstract In this work, we present polarization profiles for 23 millisecond pulsars observed at 820 and 1500 MHz with the Green Bank Telescope as part of the NANOGrav pulsar timing array. We calibrate the data using Mueller matrix solutions calculated from observations of PSRs B1929+10 and J1022+1001. We discuss the polarization profiles, which can be used to constrain pulsar emission geometry, and present both the first published radio polarization profiles for nine pulsars and the discovery of very low-intensity average profile components (“microcomponents”) in four pulsars. We obtain the Faraday rotation measures for each pulsar and use them to calculate the Galactic magnetic field parallel to the line of sight for different lines of sight through the interstellar medium. We fit for linear and sinusoidal trends in time in the dispersion measure and Galactic magnetic field and detect magnetic field variations with a period of 1 yr in some pulsars, but overall find that the variations in these parameters are more consistent with a stochastic origin.