skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended (GLEAM-X) I: Survey description and initial data release
Abstract We describe a new low-frequency wideband radio survey of the southern sky. Observations covering 72–231 MHz and Declinations south of $$+30^\circ$$ have been performed with the Murchison Widefield Array “extended” Phase II configuration over 2018–2020 and will be processed to form data products including continuum and polarisation images and mosaics, multi-frequency catalogues, transient search data, and ionospheric measurements. From a pilot field described in this work, we publish an initial data release covering 1,447 $$\mathrm{deg}^2$$ over $$4\,\mathrm{h}\leq \mathrm{RA}\leq 13\,\mathrm{h}$$ , $$-32.7^\circ \leq \mathrm{Dec} \leq -20.7^\circ$$ . We process twenty frequency bands sampling 72–231 MHz, with a resolution of 2′–45 ′′ , and produce a wideband source-finding image across 170–231 MHz with a root mean square noise of $$1.27\pm0.15\,\mathrm{mJy\,beam}^{-1}$$ . Source-finding yields 78,967 components, of which 71,320 are fitted spectrally. The catalogue has a completeness of 98% at $${{\sim}}50\,\mathrm{mJy}$$ , and a reliability of 98.2% at $$5\sigma$$ rising to 99.7% at $$7\sigma$$ . A catalogue is available from Vizier; images are made available via the PASA datastore, AAO Data Central, and SkyView. This is the first in a series of data releases from the GLEAM-X survey.  more » « less
Award ID(s):
1816492
PAR ID:
10448477
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Publications of the Astronomical Society of Australia
Volume:
39
ISSN:
1323-3580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Covering $$\sim 5600\, \deg ^2$$ to rms sensitivities of ∼70−100 $$\mu$$Jy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of $$0.5 \le \theta \lt 5{^\circ }$$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $$b_{\rm C}= 2.14^{+0.22}_{-0.20}$$ (assuming constant bias) and $$b_{\rm E}(z=0)= 1.79^{+0.15}_{-0.14}$$ (for an evolving model, inversely proportional to the growth factor), corresponding to $$b_{\rm E}= 2.81^{+0.24}_{-0.22}$$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $$b_{\rm C}= 2.02^{+0.17}_{-0.16}$$ and $$b_{\rm E}(z=0)= 1.67^{+0.12}_{-0.12}$$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates. 
    more » « less
  2. ABSTRACT The PRobe far-Infrared Mission for Astrophysics (PRIMA) concept aims to perform mapping with spectral coverage and sensitivities inaccessible to previous FIR space telescopes. PRIMA’s imaging instrument, PRIMAger, provides unique hyperspectral imaging simultaneously covering 25–235 µm. We synthesize images representing a deep, 1500 h deg−2 PRIMAger survey, with realistic instrumental and confusion noise. We demonstrate that we can construct catalogues of galaxies with a high purity (>95 per cent) at a source density of 42 k deg−2 using PRIMAger data alone. Using the XID+ deblending tool, we show that we measure fluxes with an accuracy better than 20 per cent to flux levels of 0.16, 0.80, 9.7, and 15 mJy at 47.4, 79.7, 172, and 235 µm, respectively. These are a factor of ∼2 and ∼3 fainter than the classical confusion limits for 72–96 and 126–235 µm, respectively. At $$1.5 \le z \le 2$$, we detect and accurately measure fluxes in 8–10 of the 10 channels covering 47–235 µm for sources with $$2 \lesssim \log ({\rm SFR}) \lesssim 2.5$$, a 0.5 dex improvement on what might be expected from the classical confusion limit. Recognizing that PRIMager will operate in a context where high-quality data will be available at other wavelengths, we investigate the benefits of introducing additional prior information. We show that by introducing even weak prior flux information when employing a higher source density catalogue (more than one source per beam), we can obtain accurate fluxes an order of magnitude below the classical confusion limit for 96–235 µm. 
    more » « less
  3. Abstract The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $$\sim\!5$$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $$\sim\!162$$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $$0.24\ \mathrm{mJy\ beam}^{-1}$$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified. 
    more » « less
  4. Abstract We present a systematic search for radio counterparts of novae using the Australian Square Kilometer Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, which covered the entire sky south of declination $$+41^{\circ}$$ ( $$\sim$$ $34000$ square degrees) at a central frequency of 887.5 MHz, the Variables and Slow Transients Pilot Survey, which covered $$\sim$$ $5000$ square degrees per epoch (887.5 MHz), and other ASKAP pilot surveys, which covered $$\sim$$ 200–2000 square degrees with 2–12 h integration times. We crossmatched radio sources found in these surveys over a two–year period, from 2019 April to 2021 August, with 440 previously identified optical novae, and found radio counterparts for four novae: V5668 Sgr, V1369 Cen, YZ Ret, and RR Tel. Follow-up observations with the Australian Telescope Compact Array confirm the ejecta thinning across all observed bands with spectral analysis indicative of synchrotron emission in V1369 Cen and YZ Ret. Our light-curve fit with the Hubble Flow model yields a value of $$1.65\pm 0.17 \times 10^{-4} \rm \:M_\odot$$ for the mass ejected in V1369 Cen. We also derive a peak surface brightness temperature of $$250\pm80$$ K for YZ Ret. Using Hubble Flow model simulated radio lightcurves for novae, we demonstrate that with a 5 $$\sigma$$ sensitivity limit of 1.5 mJy in 15-min survey observations, we can detect radio emission up to a distance of 4 kpc if ejecta mass is in the range $$10^{-3}\rm \:M_\odot$$ , and upto 1 kpc if ejecta mass is in the range $$10^{-5}$$ – $$10^{-3}\rm \:M_\odot$$ . Our study highlights ASKAP’s ability to contribute to future radio observations for novae within a distance of 1 kpc hosted on white dwarfs with masses $0.4$ – $$1.25\:\rm M_\odot$$ , and within a distance of 4 kpc hosted on white dwarfs with masses $0.4$ – $$1.0\:\rm M_\odot$$ . 
    more » « less
  5. MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0 <  z  < 0.09 and 0.19 <  z  < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365. 
    more » « less