Over recent years, devising classification algorithms that are robust to adversarial perturbations hasemerged as a challenging problem. In particular, deep neural nets (DNNs) seem to be susceptible tosmall imperceptible changes over test instances. However, the line of work inprovablerobustness,so far, has been focused oninformation theoreticrobustness, ruling out even theexistenceof anyadversarial examples. In this work, we study whether there is a hope to benefit fromalgorithmicnature of an attacker that searches for adversarial examples, and ask whether there isanylearning taskfor which it is possible to design classifiers that are only robust againstpolynomial-timeadversaries.Indeed, numerous cryptographic tasks (e.g. encryption of long messages) can only be secure againstcomputationally bounded adversaries, and are indeedimpossiblefor computationally unboundedattackers. Thus, it is natural to ask if the same strategy could help robust learning.We show that computational limitation of attackers can indeed be useful in robust learning bydemonstrating the possibility of a classifier for some learning task for which computational andinformation theoretic adversaries of bounded perturbations have very different power. Namely, whilecomputationally unbounded adversaries can attack successfully and find adversarial examples withsmall perturbation, polynomial time adversaries are unable to do so unless they can break standardcryptographic hardness assumptions. Our results, therefore, indicate that perhaps a similar approachto cryptography (relying on computational hardness) holds promise for achieving computationallyrobust machine learning. On the reverse directions, we also show that the existence of such learningtask in which computational robustness beats information theoretic robustness requires computationalhardness by implying (average-case) hardness o fNP.
more »
« less
Adversarial examples from computational constraints
Why are classifiers in high dimension vulnerable to “adversarial” perturbations? We show that it is likely not due to information theoretic limitations, but rather it could be due to computational constraints. First we prove that, for a broad set of classification tasks, the mere existence of a robust classifier implies that it can be found by a possibly exponential-time algorithm with relatively few training examples. Then we give two particular classification tasks where learning a robust classifier is computationally intractable. More precisely we construct two binary classifications task in high dimensional space which are (i) information theoretically easy to learn robustly for large perturbations, (ii) efficiently learnable (nonrobustly) by a simple linear separator, (iii) yet are not efficiently robustly learnable, even for small perturbations. Specifically, for the first task hardness holds for any efficient algorithm in the statistical query (SQ) model, while for the second task we rule out any efficient algorithm under a cryptographic assumption. These examples give an exponential separation between classical learning and robust learning in the statistical query model or under a cryptographic assumption. It suggests that adversarial examples may be an unavoidable byproduct of computational limitations of learning algorithms.
more »
« less
- Award ID(s):
- 1751040
- PAR ID:
- 10149456
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 97
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 831-840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of learning adversarially robust halfspaces in the distribution-independent setting. In the realizable setting, we provide necessary and sufficient conditions on the adversarial perturbation sets under which halfspaces are efficiently robustly learnable. In the presence of random label noise, we give a simple computationally efficient algorithm for this problem with respect to any ℓp-perturbationmore » « less
-
Belkin, M.; Kpotufe, S. (Ed.)We study the problem of robust learning under clean-label data-poisoning attacks, where the at-tacker injects (an arbitrary set of) correctly-labeled examples to the training set to fool the algorithm into making mistakes on specific test instances at test time. The learning goal is to minimize the attackable rate (the probability mass of attackable test instances), which is more difficult than optimal PAC learning. As we show, any robust algorithm with diminishing attackable rate can achieve the optimal dependence on ε in its PAC sample complexity, i.e., O(1/ε). On the other hand, the attackable rate might be large even for some optimal PAC learners, e.g., SVM for linear classifiers. Furthermore, we show that the class of linear hypotheses is not robustly learnable when the data distribution has zero margin and is robustly learnable in the case of positive margin but requires sample complexity exponential in the dimension. For a general hypothesis class with bounded VC dimension, if the attacker is limited to add at most t >0 poison examples, the optimal robust learning sample complexity grows almost linearly with t.more » « less
-
III, Hal Daumé (Ed.)Policy learning using historical observational data is an important problem that has found widespread applications. However, existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment that has generated the data{–}an assumption that is often false or too coarse an approximation. In this paper, we lift this assumption and aim to learn a distributionally robust policy with bandit observational data. We propose a novel learning algorithm that is able to learn a robust policy to adversarial perturbations and unknown covariate shifts. We first present a policy evaluation procedure in the ambiguous environment and also give a heuristic algorithm to solve the distributionally robust policy learning problems efficiently. Additionally, we provide extensive simulations to demonstrate the robustness of our policy.more » « less
-
III, Hal Daumé; Singh, Aarti (Ed.)Policy learning using historical observational data is an important problem that has found widespread applications. However, existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment that has generated the data{–}an assumption that is often false or too coarse an approximation. In this paper, we lift this assumption and aim to learn a distributionally robust policy with bandit observational data. We propose a novel learning algorithm that is able to learn a robust policy to adversarial perturbations and unknown covariate shifts. We first present a policy evaluation procedure in an ambiguous environment and also give a heuristic algorithm to solve the distributionally robust policy learning problems efficiently. Additionally, we provide extensive simulations to demonstrate the robustness of our policy.more » « less
An official website of the United States government

