skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinguishing deformation mechanisms in elastocapillary experiments
Soft materials are known to deform due to a variety of mechanisms, including capillarity, buoyancy, and swelling. In this paper, we present experiments on polyvinylsiloxane gel threads partially-immersed in three liquids with different solubility, wettability, and swellability. Our results demonstrate that deformations due to capillarity, buoyancy, and swelling can be of similar magnitude as such threads come to static equilibrium. To account for all three effects being present in a single system, we derive a model capable of explaining the observed data and use it to determine the force law at the three-phase contact line. The results show that the measured forces are consistent with the expected Young–Dupré equation, and do not require the inclusion of a tangential contact line force.  more » « less
Award ID(s):
1812445
PAR ID:
10149503
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
15
Issue:
46
ISSN:
1744-683X
Page Range / eLocation ID:
9426 to 9436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we experimentally studied bubble formation on the superhydrophobic surface (SHS) under a constant gas flow rate and at quasi-static regime. SHS with a radius RSHS ranging from 4.2 to 19.0 mm was used. We observed two bubbling modes A and B, depending on RSHS. In mode A for small RSHS, contact line fixed at the rim of SHS, and contact angle (θ) initially reduced, then maintained as a constant, and finally increased. In mode B for large RSHS, contact line continuously expanded, and θ slowly reduced. For both modes, during necking, contact line retracts, and θ was close to the equilibrium contact angle. Moreover, the pinch-off of bubble at the early stage was similar to the pinch-off of bubble from a nozzle and followed a power-law relation Rneck ∼ τ0.54, where Rneck is the minimum neck radius and τ is the time to detaching. Furthermore, we calculated the forces acting on the bubble and found a balance between one lifting force (pressure force) and two retaining forces (surface tension force and buoyancy force). Last, we found a waiting time for a finite volume to be detected for large RSHS. The detached volume was well predicted by Tate volume, which was derived based on balance between buoyancy and surface tension and was a function of bubble base radius. 
    more » « less
  2. Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration. 
    more » « less
  3. Abstract When a water drop is placed onto a soft polymer network, a wetting ridge develops at the drop periphery. The height of this wetting ridge is typically governed by the drop surface tension balanced by elastic restoring forces of the polymer network. However, the situation is more complex when the network is swollen with fluid, because the fluid may separate from the network at the contact line. Here we study the fluid separation and network deformation at the contact line of a soft polydimethylsiloxane (PDMS) network, swollen with silicone oil. By controlling both the degrees of crosslinking and swelling, we find that more fluid separates from the network with increasing swelling. Above a certain swelling, network deformation decreases while fluid separation increases, demonstrating synergy between network deformation and fluid separation. When the PDMS network is swollen with a fluid having a negative spreading parameter, such as hexadecane, no fluid separation is observed. A simple balance of interfacial, elastic, and mixing energies can describe this fluid separation behavior. Our results reveal that a swelling fluid, commonly found in soft networks, plays a critical role in a wetting ridge. 
    more » « less
  4. Contact line dynamics is crucial in determining the deposition patterns of evaporating colloidal droplets. Using high-speed interferometry, we directly observe the stick-slip motion of the contact line in situ and are able to resolve the instantaneous shape of the inkjet-printed, evaporating pico-liter drops containing nanoparticles of varying wettability. Integrated with post-mortem optical profilometry of the deposition patterns, the instantaneous particle volume fraction and hence the particle deposition rate can be determined. The results show that the stick-slip motion of the contact line is a strong function of the particle wettability. While the stick-slip motion is observed for nanoparticles that are less hydrophilic ( i.e. , particle contact angle θ ≈ 74° at the water–air interface), which results in a multiring deposition, a continuous receding of the contact line is observed for more hydrophilic nanoparticles ( i.e. , θ ≈ 34°), which leaves a single-ring pattern. A model is developed to predict the number of particles required to pin the contact line based on the force balance of the hydrodynamic drag, interparticle interactions, and surface tension acting on the particles near the contact line with varying particle wettability. A three-fold increase in the number of particles required for pinning is predicted when the particle wettability increases from the wetting angle of θ ≈ 74° to θ ≈ 34°. This finding explains why particles with greater wettability form a single-ring pattern and those with lower wettability form a multi-ring pattern. In addition, the particle deposition rate is found to depend on the particle wettability and vary with time. 
    more » « less
  5. Abstract We present a phase-field (PF) model to simulate the microstructure evolution occurring in polycrystalline materials with a variation in the intra-granular dislocation density. The model accounts for two mechanisms that lead to the grain boundary migration: the driving force due to capillarity and that due to the stored energy arising from a spatially varying dislocation density. In addition to the order parameters that distinguish regions occupied by different grains, we introduce dislocation density fields that describe spatial variation of the dislocation density. We assume that the dislocation density decays as a function of the distance the grain boundary has migrated. To demonstrate and parameterize the model, we simulate microstructure evolution in two dimensions, for which the initial microstructure is based on real-time experimental data. Additionally, we applied the model to study the effect of a cyclic heat treatment (CHT) on the microstructure evolution. Specifically, we simulated stored-energy-driven grain growth during three thermal cycles, as well as grain growth without stored energy that serves as a baseline for comparison. We showed that the microstructure evolution proceeded much faster when the stored energy was considered. A non-self-similar evolution was observed in this case, while a nearly self-similar evolution was found when the microstructure evolution is driven solely by capillarity. These results suggest a possible mechanism for the initiation of abnormal grain growth during CHT. Finally, we demonstrate an integrated experimental-computational workflow that utilizes the experimental measurements to inform the PF model and its parameterization, which provides a foundation for the development of future simulation tools capable of quantitative prediction of microstructure evolution during non-isothermal heat treatment. 
    more » « less