skip to main content


Title: Fluid separation and network deformation in wetting of soft and swollen surfaces
Abstract

When a water drop is placed onto a soft polymer network, a wetting ridge develops at the drop periphery. The height of this wetting ridge is typically governed by the drop surface tension balanced by elastic restoring forces of the polymer network. However, the situation is more complex when the network is swollen with fluid, because the fluid may separate from the network at the contact line. Here we study the fluid separation and network deformation at the contact line of a soft polydimethylsiloxane (PDMS) network, swollen with silicone oil. By controlling both the degrees of crosslinking and swelling, we find that more fluid separates from the network with increasing swelling. Above a certain swelling, network deformation decreases while fluid separation increases, demonstrating synergy between network deformation and fluid separation. When the PDMS network is swollen with a fluid having a negative spreading parameter, such as hexadecane, no fluid separation is observed. A simple balance of interfacial, elastic, and mixing energies can describe this fluid separation behavior. Our results reveal that a swelling fluid, commonly found in soft networks, plays a critical role in a wetting ridge.

 
more » « less
Award ID(s):
1849213
NSF-PAR ID:
10215058
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Materials
Volume:
2
Issue:
1
ISSN:
2662-4443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Amphiphilic polymer conetworks (APCNs) are polymer networks composed of hydrophilic and hydrophobic chain segments. Their applications range from soft contact lenses to membranes and biomaterials. APCNs based on polydimethylsiloxane (PDMS) and poly(2‐hydroxyethyl acrylate) are flexible and elastic in the dry and swollen state. However, they are not good at resisting deformation under load, i.e., their toughness is low. A bio‐inspired approach to reinforce APCNs is presented based on the incorporation of poly(β‐benzyl‐L‐aspartate) (PBLA) blocks between cross‐linking points and PDMS chain segments. The mechanical properties of the resulting peptide‐reinforced APCNs can be tailored by the secondary structure of the peptide chains (β‐sheets or a mixture of α‐helices and β‐sheets). Compared to non‐reinforced APCNs, the peptide‐reinforced networks have higher extensibility (53 vs. up to 341%), strength (0.71 ± 0.16 vs. 22.28 ± 2.81 MPa), and toughness (0.10 ± 0.04 vs. up to 4.85 ± 1.32 MJ m−3), as measured in their dry state. The PBLA peptides reversibly toughen and reinforce the APCNs, while other key material properties of APCNs are retained, such as optical transparency and swellability in water and organic solvents. This paves the way for applications of APCNs that benefit from significantly increased mechanical properties.

     
    more » « less
  2. Abstract

    Microcapsules with an aqueous core can be conveniently prepared by water‐in‐oil‐in‐water double emulsion microfluidics. However, conventional shell materials are based on hydrophobic polymers or colloidal particles. Thus, these microcapsules feature a hydrophobic shell impermeable to water‐soluble compounds. Capsules with semipermeable hydrogel shells have been demonstrated but may exhibit poor mechanical properties. Here, amphiphilic polymer conetworks (APCNs) based on poly(2‐hydroxyethyl acrylate)‐linked by‐polydimethylsiloxane (PHEA‐l‐PDMS) are introduced as a new class of wall materials in double emulsion microcapsules. These APCNs are mechanically robust silicone hydrogels that are swellable and permeable to water and are soft and elastic when dry or swollen. Therefore, the microcapsules can be dried and rehydrated multiple times or shrunken in sodium chloride salt solutions without getting damaged. Moreover, the APCNs are permeable for hydrophilic organic compounds and impermeable for macromolecules. Thus, they can be loaded with macromolecules or nanoparticles during microfluidic formation and with organic molecules after capsule synthesis. The microcapsules serve as microreactors for catalytically active platinum nanoparticles that decompose hydrogen peroxide. Finally, the surface of the APCN microcapsules can be selectively functionalized with a cholesterol‐based linker. Concluding, APCN microcapsules could find applications for the controlled delivery of drugs, as microreactors for synthesis, or as scaffolds for synthetic cells.

     
    more » « less
  3. We study the coupling between rotation and translation of a submerged cylinder in lubricated contact with a soft elastic substrate. Using numerical solutions and asymptotic theory, we analyze the elastohydrodynamic problem over the entire range of substrate deformations relative to the thickness of the intervening fluid film. We find a strong coupling between the rotation and translation of the cylinder when the surface deformation of the substrate is comparable to the thickness of the lubricating fluid layer. In the limit of large deformations, we show that the bodies are in near-Hertzian contact and cylinder rolls without slip, reminiscent of dry frictional contact. When the surface deformation is small relative to the separation between the surfaces, the coupling persists but is weaker, and the rotation rate scales with the translation speed to the one-third power. We then show how the external application of a torque modifies these behaviors by generating different combinations of rotational and translational motions, including back-spinning and top-spinning states. We demonstrate that these behaviors are robust regardless of whether the elastic substrate is thick or thin relative to the length scales of the flow. 
    more » « less
  4. We studied the wetting behavior of multiscale self-similar hierarchical wrinkled surfaces. The hierarchical surface was fabricated on poly(dimethylsiloxane) (PDMS) substrates by manipulating the sequential strain release and combined plasma/ultraviolet ozone (UVO) treatment. The generated structured surface shows an independently controlled dual-scale roughness with level-1 small-wavelength wrinkles (wavelength of 700–1500 nm and amplitude of 50–500 nm) resting on level-2 large-wavelength wrinkles (wavelength of 15–35 μm and amplitude of 3.5–5 μm), as well as accompanying orthogonal cracks. By tuning the aspect ratio of hierarchical wrinkles, the degree of wetting anisotropy in hierarchical wrinkled surfaces, defined as the contact angle difference between the parallel and perpendicular directions to the wrinkle grooves, is found to change between 3° and 9°. Through both experimental characterization (confocal fluorescence imaging) and theoretical analyses, we showed that the wetting state in the hierarchical wrinkled surface is in the Wenzel wetting state. We found that the measured apparent contact angle is larger than the theoretically predicted Wenzel contact angle, which is found to be attributed to the three-phase contact line pinning effect of both wrinkles and cracks that generates energetic barriers during the contact line motion. This is evidenced by the observed sudden drop of over 20° in the static contact angles along both perpendicular and parallel directions after slight vibration perturbation. Finally, we concluded that the observed small degree of wetting anisotropy in the hierarchical wrinkled surfaces mainly arises from the competition between orthogonal wrinkles and cracks in the contact line pinning. 
    more » « less
  5. Small scale contact between a soft, liquid-coated layer and a stiff surface is common in many situations, from synovial fluid on articular cartilage to adhesives in humid environments. Moreover, many model studies on soft adhesive contacts are conducted with soft silicone elastomers, which possess uncrosslinked liquid molecules ( i.e. silicone oil) when the modulus is low. We investigate how the thickness of a silicone oil layer on a soft substrate relates to the indentation depth of glass microspheres in contact with crosslinked PDMS, which have a modulus of <10 kPa. The particles indent into the underlying substrate more as a function of decreasing oil layer thickness. This is due to the presence of the liquid layer at the surface that causes capillary forces to pull down on the particle. A simple model that balances the capillary force of the oil layer and the minimal particle–substrate adhesion with the elastic and surface tension forces from the substrate is proposed to predict the particle indentation depth. 
    more » « less