The electrocatalytic hydrogen evolution reaction (HER) is one of the most studied and promising processes for hydrogen fuel generation. Single-atom catalysts have been shown to exhibit ultra-high HER catalytic activity, but the harsh preparation conditions and the low single-atom loading hinder their practical applications. Furthermore, promoting hydrogen evolution reaction kinetics, especially in alkaline electrolytes, remains as an important challenge. Herein, Pt/C60catalysts with high-loading, high-dispersion single-atomic platinum anchored on C60are achieved through a room-temperature synthetic strategy. Pt/C60-2 exhibits high HER catalytic performance with a low overpotential (η10) of 25 mV at 10 mA cm−2. Density functional theory calculations reveal that the Pt-C60polymeric structures in Pt/C60-2 favors water adsorption, and the shell-like charge redistribution around the Pt-bonding region induced by the curved surfaces of two adjacent C60facilitates the desorption of hydrogen, thus favoring fast reaction kinetics for hydrogen evolution.
- Award ID(s):
- 1808133
- PAR ID:
- 10315404
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 168
- Issue:
- 12
- ISSN:
- 0013-4651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Molybdenum sulfide (MoS2) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER) owing to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the number of active sites in MoS2. In this work, a simple method of fabricating polycrystalline multilayer MoS2on Mo foil for efficient hydrogen evolution is demonstrated by controlling the sulfur (S) vacancy concentration, which can introduce new bands and lower the hydrogen adsorption free energy (Δ
G H). For the first time, theoretical and experimental results show that the HER performance of synthesized MoS2with S vacancy can be further enhanced by the very small amount of platinum (Pt) decoration, which can introduce new gap states and more catalytic sites in real space with suitable free energy. The fabricated hybrid electrocatalyst exhibits significantly smaller Tafel slope of 38 mV dec−1and better HER electrocatalytic activity compared to previous works. This approach provides a simple pathway to design low‐cost, efficient and sizable hydrogen‐evolving electrode by simultaneously tuning the MoS2band structure and active sites. -
Abstract A hybrid biofuel cell (HBFC) is explored as a low-cost alternative to abiotic and enzymatic biofuel cells. Here the HBFC provides an enzymeless approach for the fabrication of the anodic electrode while employing an enzymatic approach for the fabrication of the cathodic electrode to develop energy harvesting platform to power bioelectronic devices. The anode employed 250 μm braided gold wire modified with colloidal platinum (Au-co-Pt) and bilirubin oxidase (BODx) modified gold coated Buckypaper (BP-Au-BODx) cathode. The functionalization of the gold coated multi-walled carbon nanotube (MWCNT) structures of the BP electrodes is achieved by 3-mercaptopropionic acid surface modification to possess negatively charged carboxylic groups and subsequently followed by EDC/Sulfo-NHS (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysulfosuccinimide) crosslinking with BODx. The integration of the BODx and gold coated MWCNTs is evaluated for bioelectrocatalytic activity. The Au-co-Pt and BP-Au-BODx exhibited excellent electrocatalytic activity towards glucose oxidation with a linear dynamic range up to 20 mM glucose and molecular oxygen reduction, respectively. The HBFC demonstrated excellent performance with the largest open circuit voltages of 0.735 V and power density of 46.31 μW/cm2in 3 mM glucose. In addition, the HBFC operating on 3 mM glucose exhibited excellent uninterrupted operational stability while continuously powering a small electronic device. These results provide great opportunities for implementing this simple but efficient HBFC to harvest the biochemical energy of target fuel(s) in diverse medical and environmental applications.
-
Sustainable hydrogen gas production is critical for future fuel infrastructure. Here, a series of phosphorous-doped carbon nitride materials were synthesized by thermal annealing of urea and ammonium hexafluorophosphate, and platinum was atomically dispersed within the structural scaffold by thermal refluxing with Zeise's salt forming Pt–N/P/Cl coordination interactions, as manifested in X-ray photoelectron and absorption spectroscopic measurements. The resulting materials were found to exhibit markedly enhanced electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media, as compared to the P-free counterpart. This was accounted for by P doping that led to a significantly improved charge carrier density within C 3 N 4 , and the sample with the optimal P content showed an overpotential of only −22 mV to reach the current density of 10 mA cm −2 , lower than that of commercial Pt/C (−26 mV), and a mass activity (7.1 mA μg−1Pt at −70 mV vs. reversible hydrogen electrode) nearly triple that of the latter. Results from the present study highlight the significance of P doping in the manipulation of the electronic structures of metal/carbon nitride nanocomposites for high-performance HER electrocatalysis.more » « less
-
Production of clean hydrogen energy from water splitting is vital for the future fuel industry, and nanocomposites have emerged as effective catalysts for the hydrogen evolution reaction (HER). In this study, Ru-CoO@SNG nanocomposites are prepared by controlled pyrolysis where Ru-CoO heterostructured nanoparticles are supported on nitrogen and sulfur codoped graphene oxide nanosheets. With a large surface area, the obtained composites exhibit a remarkable electrocatalytic activity toward HER in 1.0 M KOH with an overpotential of only −90 mV to reach the current density of 10 mA cm−2 , in comparison to −60 mV for commercial Pt/C benchmark, along with high stability. Mechanistically, codoping of sulfur and nitrogen facilitates the dispersion of the nanoparticles, and the formation of Ru-CoO heterostructures increases the active site density, reduces the electron-transfer kinetics and boosts the catalytic performance. Results from this study highlight the unique potential of structural engineering in enhancing the electrocatalytic performance of heterostructured nanocomposites.more » « less