skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Thinking from a Disciplinary Perspective: Integrating Computational Thinking in K-12 Science, Technology, Engineering, and Mathematics Education
Award ID(s):
1647018
PAR ID:
10149592
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Science Education and Technology
Volume:
29
Issue:
1
ISSN:
1059-0145
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper examines the growing field of computational thinking (CT) in education. A review of the relevant literature shows a diversity in definitions, interventions, assessments, and models. After synthesizing various approaches used to develop the construct in K-16 settings, we have created the following working definition of CT: The conceptual foundation required to solve problems effectively and efficiently (i.e., algorithmically, with or without the assistance of computers) with solutions that are reusable in different contexts. This definition highlights that CT is primarily a way of thinking and acting, which can be exhibited through the use particular skills, which then can become the basis for performance-based assessments of CT skills. Based on the literature, we categorized CT into six main facets: decomposition, abstraction, algorithm design, debugging, iteration, and generalization. This paper shows examples of CT definitions, interventions, assessments, and models across a variety of disciplines, with a call for more extensive research in this area. 
    more » « less
  2. Based in a research-practice partnership around district-wide computational thinking (CT) Pathways, this paper explores how six districts utilized the CT Engagement Inventory to examine if and how students are engaged in computing learning opportunities and write inclusive CT pathway goals. We found the CT Engagement Inventory supported districts in articulating inclusive pathway goals that moved beyond focusing only on access and participation. Instead, goals focused on building capacity to make broader access and participation possible and examining the nature of student participation. This paper demonstrates a tool to support districts in ensuring inclusive computing learning opportunities reach all students. 
    more » « less
  3. Chinn, C.; Tan, E.; Chan, C.; Kali, Y. (Ed.)
    We developed the Systems Thinking (ST) and Computational Thinking (CT) Identification Tool (ID Tool) to identify student involvement in ST and CT as they construct and revise computational models. Our ID Tool builds off the ST and CT Through Modeling Framework, emphasizing the synergistic relationship between ST and CT and demonstrating how both can be supported through computational modeling. This paper describes the process of designing and validating the ID Tool with special emphasis on the observable indicators of testing and debugging computational models. We collected 75 hours of students’ interactions with a computational modeling tool and analyzed them using the ID Tool to characterize students’ use of ST and CT when involved in modeling. The results suggest that the ID Tool has the potential to allow researchers and practitioners to identify student involvement in various aspects of ST and CT as they construct and revise computational models. 
    more » « less