skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling Edge Devices that Learn from Each Other: Cross Modal Training for Activity Recognition
Edge devices rely extensively on machine learning for intelligent inferences and pattern matching. However, edge devices use a multitude of sensing modalities and are exposed to wide ranging contexts. It is difficult to develop separate machine learning models for each scenario as manual labeling is not scalable. To reduce the amount of labeled data and to speed up the training process, we propose to transfer knowledge between edge devices by using unlabeled data. Our approach, called RecycleML, uses cross modal transfer to accelerate the learning of edge devices across different sensing modalities. Using human activity recognition as a case study, over our collected CMActivity dataset, we observe that RecycleML reduces the amount of required labeled data by at least 90% and speeds up the training process by up to 50 times in comparison to training the edge device from scratch.  more » « less
Award ID(s):
1636916
PAR ID:
10149623
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
EdgeSys'18: Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking
Page Range / eLocation ID:
37 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transfer learning has emerged as a powerful technique for improving the performance of machine learning models on new domains where labeled training data may be scarce. In this approach a model trained for a source task, where plenty of labeled training data is available, is used as a starting point for training a model on a related target task with only few labeled training data. Despite recent empirical success of transfer learning approaches, the benefits and fundamental limits of transfer learning are poorly understood. In this paper we develop a statistical minimax framework to characterize the fundamental limits of transfer learning in the context of regression with linear and one-hidden layer neural network models. Specifically, we derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data as well as appropriate notions of similarity between the source and target tasks. Our lower bound provides new insights into the benefits and limitations of transfer learning. We further corroborate our theoretical finding with various experiments. 
    more » « less
  2. Modern machine learning models require a large amount of labeled data for training to perform well. A recently emerging paradigm for reducing the reliance of large model training on massive labeled data is to take advantage of abundantly available labeled data from a related source task to boost the performance of the model in a desired target task where there may not be a lot of data available. This approach, which is called transfer learning, has been applied successfully in many application domains. However, despite the fact that many transfer learning algorithms have been developed, the fundamental understanding of "when" and "to what extent" transfer learning can reduce sample complexity is still limited. In this work, we take a step towards foundational understanding of transfer learning by focusing on binary classification with linear models and Gaussian features and develop statistical minimax lower bounds in terms of the number of source and target samples and an appropriate notion of similarity between source and target tasks. To derive this bound, we reduce the transfer learning problem to hypothesis testing via constructing a packing set of source and target parameters by exploiting Gilbert-Varshamov bound, which in turn leads to a lower bound on sample complexity. We also evaluate our theoretical results by experiments on real data sets. 
    more » « less
  3. Transfer learning, where the goal is to transfer the well-trained deep learning models from a primary source task to a new task, is a crucial learning scheme for on-device machine learning, due to the fact that IoT/edge devices collect and then process massive data in our daily life. However, due to the tiny memory constraint in IoT/edge devices, such on-device learning requires ultra-small training memory footprint, bringing new challenges for memory-efficient learning. Many existing works solve this problem by reducing the number of trainable parameters. However, this doesn't directly translate to memory-saving since the major bottleneck is the activations, not parameters. To develop memory-efficient on-device transfer learning, in this work, we are the first to approach the concept of transfer learning from a new perspective of intermediate feature reprogramming of a pre-trained model (i.e., backbone). To perform this lightweight and memory-efficient reprogramming, we propose to train a tiny Reprogramming Network (Rep-Net) directly from the new task input data, while freezing the backbone model. The proposed Rep-Net model interchanges the features with the backbone model using an activation connector at regular intervals to mutually benefit both the backbone model and Rep-Net model features. Through extensive experiments, we validate each design specs of the proposed Rep-Net model in achieving highly memory-efficient on-device reprogramming. Our experiments establish the superior performance (i.e., low training memory and high accuracy) of Rep-Net compared to SOTA on-device transfer learning schemes across multiple benchmarks. 
    more » « less
  4. Abstract Objective We develop natural language processing (NLP) methods capable of accurately classifying tumor attributes from pathology reports given minimal labeled examples. Our hierarchical cancer to cancer transfer (HCTC) and zero-shot string similarity (ZSS) methods are designed to exploit shared information between cancers and auxiliary class features, respectively, to boost performance using enriched annotations which give both location-based information and document level labels for each pathology report. Materials and Methods Our data consists of 250 pathology reports each for kidney, colon, and lung cancer from 2002 to 2019 from a single institution (UCSF). For each report, we classified 5 attributes: procedure, tumor location, histology, grade, and presence of lymphovascular invasion. We develop novel NLP techniques involving transfer learning and string similarity trained on enriched annotations. We compare HCTC and ZSS methods to the state-of-the-art including conventional machine learning methods as well as deep learning methods. Results For our HCTC method, we see an improvement of up to 0.1 micro-F1 score and 0.04 macro-F1 averaged across cancer and applicable attributes. For our ZSS method, we see an improvement of up to 0.26 micro-F1 and 0.23 macro-F1 averaged across cancer and applicable attributes. These comparisons are made after adjusting training data sizes to correct for the 20% increase in annotation time for enriched annotations compared to ordinary annotations. Conclusions Methods based on transfer learning across cancers and augmenting information methods with string similarity priors can significantly reduce the amount of labeled data needed for accurate information extraction from pathology reports. 
    more » « less
  5. Falls in the elderly are associated with significant morbidity and mortality. While numerous fall detection devices incorporating AI and machine learning algorithms have been developed, no known smartwatch-based system has been used successfully in real-time to detect falls for elderly persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch which has been trialled by nine elderly participants. The system, while being usable and welcomed by the participants in our trials, has two serious limitations. The first limitation is the inability to collect a large amount of personalized data for training. When the fall detection model, which is trained with insufficient data, is used in the real world, it generates a large amount of false positives. The second limitation is the model drift problem. This means an accurate model trained using data collected with a specific device performs sub-par when used in another device. Therefore, building one model for each type of device/watch is not a scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we first collected three datasets including accelerometer data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore the use of transfer learning to overcome the small dataset training problem for fall detection. We also demonstrated the use of transfer learning to generalize the model across the heterogeneous devices. Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false positive prediction rate than the non-transfer learning approach across various datasets collected using different devices with different hardware specifications. 
    more » « less