Organic peroxy radicals (RO2) are key intermediates in the atmospheric degradation of organic matter and fuel combustion, but to date, few direct studies of specific RO2in complex reaction systems exist, leading to large gaps in our understanding of their fate. We show, using direct, speciated measurements of a suite of RO2and gas-phase dimers from O3-initiated oxidation of α-pinene, that ∼150 gaseous dimers (C16–20H24–34O4–13) are primarily formed through RO2cross-reactions, with a typical rate constant of 0.75–2 × 10−12cm3molecule−1s−1and a lower-limit dimer formation branching ratio of 4%. These findings imply a gaseous dimer yield that varies strongly with nitric oxide (NO) concentrations, of at least 0.2–2.5% by mole (0.5–6.6% by mass) for conditions typical of forested regions with low to moderate anthropogenic influence (i.e., ≤50-parts per trillion NO). Given their very low volatility, the gaseous C16–20dimers provide a potentially important organic medium for initial particle formation, and alone can explain 5–60% of α-pinene secondary organic aerosol mass yields measured at atmospherically relevant particle mass loadings. The responses of RO2, dimers, and highly oxygenated multifunctional compounds (HOM) to reacted α-pinene concentration and NO imply that an average ∼20% of primary α-pinene RO2from OH reaction and 10% from ozonolysis autoxidize at 3–10 s−1and ≥1 s−1, respectively, confirming both oxidation pathways produce HOM efficiently, even at higher NO concentrations typical of urban areas. Thus, gas-phase dimer formation and RO2autoxidation are ubiquitous sources of low-volatility organic compounds capable of driving atmospheric particle formation and growth.
more »
« less
Unexpected formation of oxygen-free products and nitrous acid from the ozonolysis of the neonicotinoid nitenpyram
The neonicotinoid nitenpyram (NPM) is a multifunctional nitroenamine [(R1N)(R2N)C=CHNO2] pesticide. As a nitroalkene, it is structurally similar to other emerging contaminants such as the pharmaceuticals ranitidine and nizatidine. Because ozone is a common atmospheric oxidant, such compounds may be oxidized on contact with air to form new products that have different toxicity compared to the parent compounds. Here we show that oxidation of thin solid films of NPM by gas-phase ozone produces unexpected products, the majority of which do not contain oxygen, despite the highly oxidizing reactant. A further surprising finding is the formation of gas-phase nitrous acid (HONO), a species known to be a major photolytic source of the highly reactive hydroxyl radical in air. The results of application of a kinetic multilayer model show that reaction was not restricted to the surface layers but, at sufficiently high ozone concentrations, occurred throughout the film. The rate constant derived for the O3−NPM reaction is 1 × 10−18cm3⋅s−1, and the diffusion coefficient of ozone in the thin film is 9 × 10−10cm2⋅s−1. These findings highlight the unique chemistry of multifunctional nitroenamines and demonstrate that known chemical mechanisms for individual moieties in such compounds cannot be extrapolated from simple alkenes. This is critical for guiding assessments of the environmental fates and impacts of pesticides and pharmaceuticals, and for providing guidance in designing better future alternatives.
more »
« less
- PAR ID:
- 10149663
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 21
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 11321-11327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Building insulation materials can affect indoor air by (i) releasing primary volatile organic compounds (VOCs) from building enclosure cavities to the interior space, (ii) mitigating exposure to outdoor pollutants through reactive deposition (of oxidants, e.g. , ozone) or filtration (of particles) in infiltration air, and (iii) generating secondary VOCs and other gas-phase byproducts resulting from oxidant reactions. This study reports primary VOC emission fluxes, ozone (O 3 ) reaction probabilities ( γ ), and O 3 reaction byproduct yields for eight common, commercially available insulation materials. Fluxes of primary VOCs from the materials, measured in a continuous flow reactor using proton transfer reaction-time of flight-mass spectrometry, ranged from 3 (polystyrene with thermal backing) to 61 (cellulose) μmol m −2 h −1 (with total VOC mass emission rates estimated to be between ∼0.3 and ∼3.3 mg m −2 h −1 ). Major primary VOC fluxes from cellulose were tentatively identified as compounds likely associated with cellulose chemical and thermal decomposition products. Ozone-material γ ranged from ∼1 × 10 −6 to ∼30 × 10 −6 . Polystyrene with thermal backing and polyisocyanurate had the lowest γ , while cellulose and fiberglass had the highest. In the presence of O 3 , total observed volatile byproduct yields ranged from 0.25 (polystyrene) to 0.85 (recycled denim) moles of VOCs produced per mole of O 3 consumed, or equivalent to secondary fluxes that range from 0.71 (polystyrene) to 10 (recycled denim) μmol m −2 h −1 . Major emitted products in the presence of O 3 were generally different from primary emissions and were characterized by yields of aldehydes and acetone. This work provides new data that can be used to evaluate and eventually model the impact of “hidden” materials ( i.e. , those present inside wall cavities) on indoor air quality. The data may also guide building enclosure material selection, especially for buildings in areas of high outdoor O 3 .more » « less
-
Abstract This study reports a pulsed laser deposition-assisted synthesis of highly metallic titanium nitride (TiN) and a series of semiconducting titanium oxynitride (TiNxOy) compounds in thin film form with tunable plasmonic properties by carefully altering the nitrogen (N)-oxygen (O) ratio. The N/O ratio was controlled from 0.3 (highest oxygen doping of TiN) to ~ 1.0 (no oxygen doping of TiN) by growing the TiN films under nitrogen pressures of 50, 35, and 10 mTorr and high vacuum conditions of 2 × 10−6 Torr with no external gas introduced. The presence of nitrogen in the deposition chamber during the film growth affects the gas phase oxidation of TiN to TiNxOyby increasing the mean free path-dependent N and O inter-collisions per second by two to three orders of magnitudes. The evidence of increased oxidation of TiN to TiNxOywith an increase in nitrogen deposition pressure was obtained using X-ray photoelectron spectroscopy analysis. While the TiN samples deposited in high vacuum conditions had the highest reflectance, TiNxOythin films were also found to possess high reflectance at low frequency with a well-defined edge around 20,000 cm−1. Furthermore, the vacuum-deposited TiN samples showed a large negative dielectric constant of -330 and the largest frequency of zero-crossing at 25,000 cm−1; the TiNxOysamples deposited in the presence of nitrogen ambient also showed promising plasmonic applications at the near-mid infrared range. A comparison of the dielectric constant and loss function data of this research with the literature values for noble metals seems to indicate that TiN and TiNxOyhave the potential to replace gold and silver in the visible and near-infrared spectral regions.more » « less
-
Abstract Single‐walled carbon nanotubes (SWCNTs) are a class of 1D nanomaterials that exhibit extraordinary electrical and optical properties. However, many of their fundamental studies and practical applications are stymied by sample polydispersity. SWCNTs are synthesized in bulk with broad structural (chirality) and geometrical (length and diameter) distributions; problematically, all known post‐synthetic sorting methods rely on ultrasonication, which cuts SWCNTs into short segments (typically <1 µm). It is demonstrated that ultralong (>10 µm) SWCNTs can be efficiently separated from shorter ones through a solution‐phase “self‐sorting”. It is shown that thin‐film transistors fabricated from long semiconducting SWCNTs exhibit a carrier mobility as high as ≈90 cm2V−1s−1, which is ≈10 times higher than those which use shorter counterparts and well exceeds other known materials such as organic semiconducting polymers (<1 cm2V−1s−1), amorphous silicon (≈1 cm2V−1s−1), and nanocrystalline silicon (≈50 cm2V−1s−1). Mechanistic studies suggest that this self‐sorting is driven by the length‐dependent solution phase behavior of rigid rods. This length sorting technique shows a path to attain long‐sought ultralong, electronically pure carbon nanotube materials through scalable solution processing.more » « less
-
Abstract In recent years, the excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide (α-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10–20μm). Here, we report on the fabrication, structural, morphological, and optical IR characterization of large-area (over 1 cm2size)α-MoO3polycrystalline film deposited on fused silica substrates by pulsed laser deposition. Due to the random grain distribution, the thin film does not display any optical anisotropy at normal incidence. However, the proposed fabrication method allows us to achieve a singleα-phase, preserving the typical strong dispersion related to the phononic response ofα-MoO3flakes. Remarkable spectral properties of interest for IR photonics applications are reported. For instance, a polarization-tunable reflection peak at 1006 cm−1with a dynamic range of ΔR= 0.3 and a resonanceQ-factor as high as 53 is observed at 45° angle of incidence. Additionally, we report the fulfillment of an impedance matching condition with the SiO2substrate leading to a polarization-independent almost perfect absorption condition (R< 0.01) at 972 cm−1which is maintained for a broad angle of incidence. In this framework our findings appear extremely promising for the further development of mid-IR lithography-free, scalable films, for efficient and large-scale sensors, filters, thermal emitters, and label-free biochemical sensing devices operating in the free space, using far-field detection setups.more » « less
An official website of the United States government
