- Award ID(s):
- 1754152
- PAR ID:
- 10149800
- Date Published:
- Journal Name:
- Journal of Plankton Research
- Volume:
- 42
- Issue:
- 1
- ISSN:
- 0142-7873
- Page Range / eLocation ID:
- 19 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A wide range of literature connects sex ratio and mating behaviours in non-human animals. However, research examining sex ratio and human mating is limited in scope. Prior work has examined the relationship between sex ratio and desire for short-term, uncommitted mating as well as outcomes such as marriage and divorce rates. Less empirical attention has been directed towards the relationship between sex ratio and mate preferences, despite the importance of mate preferences in the human mating literature. To address this gap, we examined sex ratio's relationship to the variation in preferences for attractiveness, resources, kindness, intelligence and health in a long-term mate across 45 countries ( n = 14 487). We predicted that mate preferences would vary according to relative power of choice on the mating market, with increased power derived from having relatively few competitors and numerous potential mates. We found that each sex tended to report more demanding preferences for attractiveness and resources where the opposite sex was abundant, compared to where the opposite sex was scarce. This pattern dovetails with those found for mating strategies in humans and mate preferences across species, highlighting the importance of sex ratio for understanding variation in human mate preferences.more » « less
-
Fire is an important determinant of habitat structure and biodiversity across ecosystems worldwide. In fire-dependent communities, similar to the North American prairie, fire suppression contributes to local plant extinctions. Yet the demographic mechanisms responsible for species loss have not been directly investigated. We conducted a 21-y longitudinal study of 778 individual plants of
Echinacea angustifolia , a widespread perennial species with chronically limited mating opportunities, to explore how fire affects reproduction. In a large preserve, with management units on different burn schedules, we investigatedEchinacea mating scenes, which quantify isolation from potential mates and overlap in the timing of flowering, to determine the extent to which fire influences the potential for sexual reproduction. We demonstrate that fire consistently increased mating opportunities by synchronizing reproductive effort. Each fire occurred during fall or spring and stimulated flowering in the subsequent summer, thus synchronizing reproduction among years and increasing the proximity of potential mates after a fire. Greater within-season flowering synchrony in postfire mating scenes further increased mating potential. The improved postfire mating scene enhanced reproduction by increasing pollination efficiency. Seed set in scenes postfire exceeded other scenes by 55%, and annual fecundity nearly doubled (88% increase). We predict the reproductive benefits of synchronized flowering after fire can alleviate mate-finding Allee effects, promote population growth, and forestall local extirpation in small populations ofEchinacea and many other prairie species. Furthermore, the synchronization of flowering by burning may improve mating opportunities, reproduction, and the likelihood of persistence for many other plant species in fire-dependent habitats. -
Mating with another species is often maladaptive because it generally results in no or low-fitness offspring. When hybridization is sufficiently costly, individuals should avoid mating with heterospecifics even if it reduces their ability to mate with high-quality conspecifics that resemble heterospecifics. Here, we used spadefoot toads, Spea multiplicata, to evaluate whether females alter their preferences for conspecific male sexual signals (call rate) depending on heterospecific presence. When presented with conspecific signals against a background including both conspecific and heterospecific signals, females preferred male traits that were most dissimilar to heterospecifics—even though these signals are potentially associated with lower-quality mates. However, when these same females were presented with a background that included only conspecific signals, some females switched their preferences, choosing conspecific signals that were exaggerated and indicative of high-quality conspecific mates. Because only some females switched their preferences between these two chorus treatments, there was no population-level preference for exaggerated conspecific male signals in the absence of heterospecifics. These results show that hybridization risk can alter patterns of mate choice and, consequently, sexual selection on male signals. Moreover, they emphasize that the strength and expression of reproductive barriers between species (such as mate choice) can be context-dependent.more » « less
-
Abstract Background Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders.
Results We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings.
Conclusion Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.
-
SUMMARY Both individual sex and population sex ratio can affect lifetime reproductive success. As a result, multiple mechanisms have evolved to regulate sexual phenotype, including adult sex change in fishes. While adult sex change is typically socially regulated, few studies focus on the non‐chromosomal mechanisms regulating primary sex allocation. We investigated primary sex determination in the bluebanded goby (
Lythrypnus dalli ), a bidirectionally sex‐changing fish. Of the studies investigating primary sex determination in species with adult sex change, this is the first to incorporate the roles of social status and size, key factors for determining adult sex allocation. ForL. dalli , adult sex is regulated by social status: dominants are male; subordinates are female. In social groups of laboratory‐reared juveniles, we demonstrate that status also predicts primary sex. Dominant juveniles developed male‐typical genitalia, and their gonads contained significantly less ovarian tissue than subordinates, which developed female‐typical genitalia. To better understand natural development, we quantified the distribution of juveniles and adults on the reef and analyzed genital papilla and gonad morphology in a sample of wild‐caught juveniles. Juveniles were observed in various social environments, and most grouped with other juveniles and/or adults. The majority of field‐caught juveniles had female‐typical genitalia and bisexual, female‐biased gonads. These data are consistent with a single mechanism that regulates sexual phenotype throughout life. Social status could first cause and then maintain through adulthood a female‐biased population, allowing individuals to regulate sex based on local conditions, which is important for optimizing lifetime reproductive success.