skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 15, 2026

Title: Accurate prediction of olive‐sided flycatcher breeding status using song rate measured with autonomous recording units
Abstract Autonomous recording units (ARUs) are recognized for their use in detecting vocalizing bird species to assess presence, occupancy, and density, but their potential to monitor reproductive status of individuals and reproductive rates is not well known. We investigated whether song rates derived from ARU data, when combined with the known date, can be used to predict the proportion of male songbirds in 3 breeding status classes (single, paired, and feeding young). We monitored breeding status with weekly field visits and collected daily ARU recordings at 46 olive‐sided flycatcher (Contopus cooperi) breeding territories in northwestern Canada in 2016–2017. We tested 4 variations of a hierarchical multinomial regression model that used time of day, day of year, and song rate derived from 2‐minute recordings to predict breeding status, and evaluated models using a novel, likelihood‐based approach. We found the top model correctly estimated 79% of the observed proportions of birds in each breeding status across the length of the breeding season. Although date was the primary predictor of breeding status, singing rate reduced some of the uncertainty and provided more accurate estimates for a given time. A major challenge to prediction accuracy and data interpretation was accounting for bird movement and the associated impact on detection, which we partly addressed by limiting our study to individuals who were detected on at least 30% of ARU sampling days. We demonstrate that ARUs can be used to assess breeding status in a cryptic, low‐density species at risk such as the olive‐sided flycatcher, suggesting this method could be applied to a wider range of species to better understand demographics and population dynamics, and inform management decisions, for bird species of concern.  more » « less
Award ID(s):
2136198
PAR ID:
10595490
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
The Journal of Wildlife Management
ISSN:
0022-541X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bird song has historically been characterized as a primarily male behavior that evolves through sexual selection pressures involved in mate attraction. More recently, researchers showed that female song is far more prevalent in songbirds than previously thought, raising new questions about how other social functions of birdsong and sexual selection pressures on females might affect song evolution. Certain breeding systems, particularly cooperative breeding, are hypothesized to change social dynamics and sexual selection pressures on males and females and may thus influence song evolution in both. Here, we construct a large-scale database synthesizing species-level information on the presence of female song, the characteristics of presumably male song, social variables, and breeding systems, and we perform comparative phylogenetic analyses. Our results suggest that cooperative breeding and female song co-occur significantly more than expected and exhibit co-evolutionary dynamics; in particular, cooperative breeding appears to decrease the likelihood that female song is lost. Notably, we find evidence that these trends might be linked to certain social features associated with cooperative breeding, including social bond stability, but not others, such as increased group size. In addition, we observe that song repertoire size appears to evolve more slowly in cooperative breeding lineages. Overall, our findings demonstrate that cooperative breeding may have complex and sex-specific effects on song evolution, maintaining female song while slowing the rate of male song elaboration, suggesting that song in cooperatively breeding species could function in ways that differ from the traditional mate-attraction paradigm and that lesser-studied functions of songs may be evolutionarily consequential. 
    more » « less
  2. Environmental stress, especially during development, can cause important phenotypic changes in individuals. In songbirds, these stress-induced changes have been shown to include impaired learning of song and reduced song complexity in several species. Typically, developmental stress has been studied in terms of individual variation within a population; however, birdsong, a culturally transmitted trait, may undergo relatively rapid changes if widespread learning impairment results from population-level environmental stress, and these changes could potentially be amplified if affected individuals become the song tutors for future generations. We thus hypothesize that ecosystem-wide stressors may cause population-level changes to birdsong. Here, we use publicly available birdsong recordings to determine whether song differences were evident after an abnormal and severe 2016 drought in western New York State. We analyzed birdsong recordings of two species, the Dark-eyed Junco (Junco hyemalis) and the Song Sparrow (Melospiza melodia), recorded between 2006–2020 in the drought-affected region and, for comparison, in two nearby regions less affected by the drought. The population-level song features of the species with more complex songs (Song Sparrow) changed in the drought area after 2016, but not in the control area. In the species with a more simple song (Dark-eyed Junco), we detected song changes in both regions, suggesting that the drought did not have an outsized effect on song in this species. These findings support a more nuanced hypothesis that stress-induced deficits may disproportionately affect species with songs that are more difficult to learn. These conclusions are tempered by the relatively sparse recording availability from years prior to 2016, but we predict that future longitudinal studies of song evolution in natural populations will be more tractable given the nearly exponential increase in the number of song recordings deposited in public repositories in recent years, making this experimental design a useful framework for future studies. 
    more » « less
  3. Abstract Sex‐related differences in vital rates that drive population change reflect the basic life history of a species. However, for visually monomorphic bird species, determining the effect of sex on demographics can be a challenge. In this study, we investigated the effect of sex on apparent survival, recruitment, and breeding propensity in the Adélie penguin (Pygoscelis adeliae), a monochromatic, slightly size dimorphic species with known age, known sex, and known breeding history data collected during 1996–2019 (n = 2127 birds) from three breeding colonies on Ross Island, Antarctica. Using a multistate capture–mark–recapture maximum‐likelihood model, we estimated apparent survival (), recapture (resighting) probability (), and the probability of transitioning among breeding states and moving between colonies (; colony‐specific non‐juvenile pre‐breeders, breeders, and non‐breeders). Survival rate varied by breeding status and colony, but not sex, and pre‐breeders had higher survival rates than breeders and non‐breeders. Females had a higher probability of recruiting into the breeding population each year and may enter the breeding pool at younger ages. In contrast, both sexes had the same probability of breeding from year to year once they had recruited. Although we detected no direct sex effects on survival, the variation in recruitment probability and age‐at‐first reproduction, along with lower survival rates of breeders compared to pre‐breeders, likely leads to shorter lifespans for females. This is supported by our findings of a male‐biased mean adult sex ratio (ASR) of 1.4 males for every female ( proportion of males = 0.57, SD = 0.07) across all colonies and years in this metapopulation. Our study illustrates how important it can be to disentangle sex‐related variation in population vital rates, particularly for species with complex life histories and demographic dynamics. 
    more » « less
  4. null (Ed.)
    Abstract Differences in social status are often mediated by agonistic encounters between competitors. Robust literature has examined social status-dependent brain gene expression profiles across vertebrates, yet social status and reproductive state are often confounded. It has therefore been challenging to identify the neuromolecular mechanisms underlying social status independent of reproductive state. Weakly electric fish, Gymnotus omarorum , display territorial aggression and social dominance independent of reproductive state. We use wild-derived G. omarorum males to conduct a transcriptomic analysis of non-breeding social dominance relationships. After allowing paired rivals to establish a dominance hierarchy, we profiled the transcriptomes of brain sections containing the preoptic area (region involved in regulating aggressive behaviour) in dominant and subordinate individuals. We identified 16 differentially expressed genes (FDR < 0.05) and numerous genes that co-varied with behavioural traits. We also compared our results with previous reports of differential gene expression in other teleost species. Overall, our study establishes G. omarorum as a powerful model system for understanding the neuromolecular bases of social status independent of reproductive state. 
    more » « less
  5. Cooperatively breeding vertebrates are common in unpredictable environments where the costs and benefits of providing offspring care fluctuate temporally. To balance these fitness outcomes, individuals of cooperatively breeding species often exhibit behavioural plasticity according to environmental conditions. Although individual variation in cooperative behaviours is well-studied, less is known about variation in plasticity of social behaviour. Here, we examine the fitness benefits, plasticity and repeatability of nest guarding behaviour in cooperatively breeding superb starlings ( Lamprotornis superbus ). After demonstrating that the cumulative nest guarding performed at a nest by all breeders and helpers combined is a significant predictor of reproductive success, we model breeder and helper behavioural reaction norms to test the hypothesis that individuals invest more in guarding in favourable seasons with high rainfall. Variation in nest guarding behaviour across seasons differed for individuals of different reproductive status: breeders showed plastic nest guarding behaviour in response to rainfall, whereas helpers did not. Similarly, we found that individual breeders show repeatability and consistency in their nest guarding behaviour while individual helpers did not. Thus, individuals with the potential to gain direct fitness benefits exhibit greater plasticity and individual-level repeatability in cooperative behaviour. 
    more » « less