skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage
Abstract Helical structures have attracted considerable attention due to their inherent optical chirality. Here, we report a unique type of 3D Janus plasmonic helical nanoaperture with direction-controlled polarization sensitivity, which is simply fabricated via the one-step grayscale focused ion beam milling method. Circular dichroism in transmission of as large as 0.72 is experimentally realized in the forward direction due to the spin-dependent mode coupling process inside the helical nanoaperture. However, in the backward direction, the nanoaperture acquires giant linear dichroism in transmission of up to 0.87. By encoding the Janus metasurface with the two nanoaperture enantiomers having specified rotation angles, direction-controlled polarization-encrypted data storage is demonstrated for the first time, where a binary quick-response code image is displayed in the forward direction under the circularly polarized incidence of a specified handedness, while a distinct grayscale image is revealed in the backward direction under linearly polarized illumination with a specified azimuthal angle. We envision that the proposed Janus helical nanoapertures will provide an appealing platform for a variety of applications, which will range from multifunctional polarization control, enantiomer sensing, data encryption and decryption to optical information processing.  more » « less
Award ID(s):
1653032 1552871
PAR ID:
10150136
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
8
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optical chiral imaging, as an important tool in chemical and biological analysis, has recently undergone a revolution with the development of chiral metamaterials and metasurfaces. However, the existing chiral imaging approaches based on metamaterials or metasurfaces can only display binary images with 1 bit pixel depth having either black or white pixels. Here, the unique chiral grayscale imaging based on plasmonic metasurfaces of stepped V‐shaped nanoapertures is reported with both high circular dichroism and large polarization linearity in transmission. By interlacing two subarrays of chiral nanoaperture enantiomers into one metasurface, two specific linear polarization profiles are independently generated in transmission under different incident handedness, which can then be converted into two distinct intensity profiles for demonstrating spin‐controlled grayscale images with 8 bit pixel depth. The proposed chiral grayscale imaging approach with subwavelength spatial resolution and high data density provides a versatile platform for many future applications in image encryption and decryption, dynamic display, advanced chiroptical sensing, and optical information processing. 
    more » « less
  2. Abstract Metasurfaces composed of in‐plane subwavelength nanostructures have unprecedented capability in manipulating the amplitude, phase, and polarization states of light. Here, a unique type of direction‐controlled bifunctional metasurface polarizer is proposed and experimentally demonstrated based on plasmonic stepped slit‐groove dimers. In the forward direction, a chiral linear polarizer is enabled which only allows the transmission of a certain incident handedness and converts it into the specified linear polarization. In the backward direction, the metasurface functions as an anisotropic circular polarizer to selectively convert a certain linear polarization component into the desired circularly polarized transmission. The observed direction‐controlled polarization selection and conversion are explained by the spin‐dependent mode coupling process inside the bilayer structure. Anisotropic chiral imaging based on the proposed metasurface polarizer is further demonstrated. The results provide new degrees of freedom to realize future multifunctional photonic integrated devices for structured light conversion, vector beam generation, optical imaging and sensing, and optical communication. 
    more » « less
  3. Abstract Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on intrinsically chiral plasmonic stepped nanoapertures with a simultaneously high circular dichroism in transmission (CDT) and large cross-polarization ratio (CPR) in transmitted light to exhibit spin-controlled wavefront shaping capabilities. The chiral geometric metasurfaces are constructed by merging two independently designed subarrays of the two enantiomers for the stepped nanoaperture. Under a certain incident handedness, the transmission from one subarray is allowed, while the transmission from the other subarray is strongly prohibited. The merged metasurface then only exhibits the transmitted signal with the phase profile of one subarray, which can be switched by changing the incident handedness. Based on the chiral geometric metasurface, both chiral metasurface holograms and the spin-dependent generation of hybrid-order Poincaré sphere beams are experimentally realized. Our approach promises further applications in spin-controlled metasurface devices for complex beam conversion, image processing, optical trapping, and optical communications. 
    more » « less
  4. Silver nanogratings are anisotropic plasmonic nanostructures with potential application in optical components due to their large birefringence and dichroism. We induced linear birefringence and linear dichroism in subwavelength Ag-AgCl films by irradiating with a single low-power linearly polarized laser beam. The laser beam aligns silver nanoparticles in the direction of laser polarization and forms nanograting. We used Stokes parameters to determine linear birefringence and linear dichroism in silver aligned nanostructures. The values of linear dichroism and linear birefringence in silver nanogratings are controllable through manipulating the spatial period of nanogratings. The dispersion characteristic of dichroism and birefringence is also investigated. 
    more » « less
  5. Abstract Unidirectional optical systems enable selective control of light through asymmetric processing of radiation, effectively transmitting light in one direction while blocking unwanted propagation in the opposite direction. Here, a reciprocal diffractive unidirectional focusing design based on linear and isotropic diffractive layers that are structured is introduced. Using gradient descent‐based optimization, a cascaded set of diffractive layers are spatially engineered at the wavelength scale to focus light efficiently in the forward direction while blocking it in the opposite direction. The forward energy focusing efficiency and the backward energy suppression capabilities of this unidirectional architecture are demonstrated under various illumination angles and wavelengths, illustrating the versatility of the polarization‐insensitive design. Furthermore, it is demonstrated that these designs are resilient to adversarial attacks that utilize wavefront engineering from outside. Experimental validation using terahertz radiation confirmed the feasibility of this diffractive unidirectional focusing framework. Diffractive unidirectional designs can operate across different parts of the electromagnetic spectrum by scaling the resulting diffractive features proportional to the wavelength of light and will find applications in security, defense, and optical communication, among others. 
    more » « less