skip to main content


Search for: All records

Award ID contains: 1653032

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Germanium selenide (GeSe) is a 2D layered material with an anisotropic crystal structure analogous to black phosphorus (BP). But unlike BP, GeSe is stable under ambient conditions and therefore provides more flexibility in building practical nanoscale devices. The in‐plane anisotropic vibrational, electrical, and optical properties of layered GeSe originating from the low symmetry of its crystal structure are being explored mostly for building polarization‐sensitive optoelectronic devices. However, the nonlinear optical properties of layered GeSe have not been investigated yet. Here, the anisotropic polarization‐dependent third‐harmonic generation (THG) from exfoliated thin GeSe flakes due to the low in‐plane lattice symmetry is reported. Furthermore, it is also shown that the intensity and polarization state of TH emission can be controlled by the polarization state of pump beam. Moreover, it is demonstrated that the crystal's symmetry axes can be rapidly determined by characterizing the intensity profile of TH emission upon the excitation from radially or azimuthally polarized vector beam. The results of this study pave the way for realizing anisotropic nonlinear optical devices such as multiplexers, signal processors, and other prototypes for future on‐chip photonic circuits and optical information processing.

     
    more » « less
  2. Abstract

    The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication.

     
    more » « less
  3. Abstract

    The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from −1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states arbitrarily for optical vortex beams will lead to many new applications in optical manipulation, quantum optics, and optical communication.

     
    more » « less
  4. Abstract

    The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of states for various nanophotonic applications.

     
    more » « less
  5. Abstract

    Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2monolayer precisely determines the output circular polarization state of the generated second-harmonic vortex. These results pave the way for building future miniaturized valleytronic devices with atomic-scale thickness for many applications such as chiral photon emission, nonlinear beam generation, optoelectronics, and quantum computing.

     
    more » « less
  6. Abstract

    The free‐space optical vortex transmutation is realized by using geometric plasmonic metasurfaces with the designed noncanonical vortex phase profiles possessing discrete rotational symmetries of finite order. Based on the introduced continuous‐to‐discrete rotational symmetry breaking in metasurfaces, the vortex transmutation phenomena are observed behind the metasurfaces from the near‐field to far‐field diffraction in free space. The near‐field optical beam profile represents the input vortex, while in the far field the input vortex is diffracted into the central output vortex with topological charge determined by the transmutation rule and the symmetrically distributed off‐axis vortices with unity topological charge bifurcating from the input vortex, with the total orbital angular momentum conserved. The demonstrated free‐space optical vortex transformation will promise many potential applications related to optical communication, particle manipulation, and quantum information processing.

     
    more » « less
  7. Abstract

    Helical structures have attracted considerable attention due to their inherent optical chirality. Here, we report a unique type of 3D Janus plasmonic helical nanoaperture with direction-controlled polarization sensitivity, which is simply fabricated via the one-step grayscale focused ion beam milling method. Circular dichroism in transmission of as large as 0.72 is experimentally realized in the forward direction due to the spin-dependent mode coupling process inside the helical nanoaperture. However, in the backward direction, the nanoaperture acquires giant linear dichroism in transmission of up to 0.87. By encoding the Janus metasurface with the two nanoaperture enantiomers having specified rotation angles, direction-controlled polarization-encrypted data storage is demonstrated for the first time, where a binary quick-response code image is displayed in the forward direction under the circularly polarized incidence of a specified handedness, while a distinct grayscale image is revealed in the backward direction under linearly polarized illumination with a specified azimuthal angle. We envision that the proposed Janus helical nanoapertures will provide an appealing platform for a variety of applications, which will range from multifunctional polarization control, enantiomer sensing, data encryption and decryption to optical information processing.

     
    more » « less
  8. Abstract

    The topological charge (TC) inversion of optical vortex is demonstrated along the beam propagation direction by using plasmonic geometric metasurfaces with the initial wave fronts designed from the principle of caustic surface. The detailed TC inversion evolution process is observed together with the transmutation point where the vortex vanishes. The orbital angular momentum (OAM) mode distributions during the TC inversion process are studied to show the dynamic redistributions of OAM mode density between the central area and the surrounding area of the beam with the total OAM conserved. Furthermore, the TC inversion of self‐accelerating vortex beam along the parabolic trajectory is presented. The realization of controlling TC inversion of optical vortex along arbitrary beam trajectory paves the way for many applications with more complex functionalities in optical trapping and manipulation, optical sensing, quantum information and computation, and data communication.

     
    more » « less
  9. Abstract

    Optical chiral imaging, as an important tool in chemical and biological analysis, has recently undergone a revolution with the development of chiral metamaterials and metasurfaces. However, the existing chiral imaging approaches based on metamaterials or metasurfaces can only display binary images with 1 bit pixel depth having either black or white pixels. Here, the unique chiral grayscale imaging based on plasmonic metasurfaces of stepped V‐shaped nanoapertures is reported with both high circular dichroism and large polarization linearity in transmission. By interlacing two subarrays of chiral nanoaperture enantiomers into one metasurface, two specific linear polarization profiles are independently generated in transmission under different incident handedness, which can then be converted into two distinct intensity profiles for demonstrating spin‐controlled grayscale images with 8 bit pixel depth. The proposed chiral grayscale imaging approach with subwavelength spatial resolution and high data density provides a versatile platform for many future applications in image encryption and decryption, dynamic display, advanced chiroptical sensing, and optical information processing.

     
    more » « less
  10. Abstract

    Metasurfaces composed of in‐plane subwavelength nanostructures have unprecedented capability in manipulating the amplitude, phase, and polarization states of light. Here, a unique type of direction‐controlled bifunctional metasurface polarizer is proposed and experimentally demonstrated based on plasmonic stepped slit‐groove dimers. In the forward direction, a chiral linear polarizer is enabled which only allows the transmission of a certain incident handedness and converts it into the specified linear polarization. In the backward direction, the metasurface functions as an anisotropic circular polarizer to selectively convert a certain linear polarization component into the desired circularly polarized transmission. The observed direction‐controlled polarization selection and conversion are explained by the spin‐dependent mode coupling process inside the bilayer structure. Anisotropic chiral imaging based on the proposed metasurface polarizer is further demonstrated. The results provide new degrees of freedom to realize future multifunctional photonic integrated devices for structured light conversion, vector beam generation, optical imaging and sensing, and optical communication.

     
    more » « less