skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Optimization of GaSb thermophotovoltaic diodes with metallic photonic crystal front-surface filters
Abstract— A promising technology for waste-heat recovery applications is thermophotovoltaics (TPVs), which use photovoltaic diodes to convert thermal energy into electricity. The most commonly used TPV diode material is gallium antimonide (GaSb). Recently, GaSb TPV diodes were fabricated with front-surface metallic photonic crystal (MPhC) filters to more optimally convert the incident spectrum. This method showed promising initial results, in part due to a shifting of the photogenerated carriers away from the front-surface and into the device. In this paper, we use the Atlas-Silvaco software package to optimize the TPV diode structure for MPhCs. We investigate the addition of an intrinsic region in the device to take advantage of the shifted photogeneration profile from the MPhCs. This design allows for a 10% improvement in internal quantum at the peak MPhC transmission wavelength. https://doi.org/10.1109/MWSCAS.2017.8053055  more » « less
Award ID(s):
1806311
PAR ID:
10152806
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Optimization of GaSb Thermophotovoltaic Diodes with Metallic Photonic Crystal Front-Surface Filters
Page Range / eLocation ID:
843 to 846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermophotovoltaics (TPVs) are a potential technology for waste-heat recovery applications and utilize IR sensitive photovoltaic diodes to convert long wavelength photons (>800nm) into electrical energy. The most common conversion regions utilize Gallium Antimonide (GaSb) as the standard semiconductor system for TPV diodes due to its high internal quantum efficiencies (close to 90%) for infrared radiation (~1700nm). However, parasitic losses prevent high conversion efficiencies from being achieved in the final device. One possible avenue to improve the conversion efficiency of these devices is to incorporate metallic photonic crystals (MPhCs) onto the front surface of the diode. In this work, we study the effect of MPhCs on GaSb TPV diodes. Simulations are presented which characterize a specific MPhC design for use with GaSb. E-field intensity vs. wavelength and depth are investigated as well as the effect of the thickness of the PhC on the interaction time between the e-field and semiconductor. It is shown that the thickness of MPhC has little effect on width of the enhancement band, and the depth the ideal p-i-n junction is between 0.6􀈝m and 2.1um. Additionally, simulated results demonstrate an increase of E-field/semiconductor interaction time of approximately 40% and 46% for a MPhC thickness of 350nm and 450nm respectively. 
    more » « less
  2. We demonstrate a room-temperature all-epitaxial guided-mode resonance light-emitting diode operating in the mid-wave infrared. The device comprises a dielectric waveguide with an AlGaAsSb p−i−n diode core, below a layer of grating-patterned GaSb and above a highly doped, and thus, low index, InAsSb layer. Light emitted from the device active region into propagating modes in the waveguide scatters into free space via the GaSb grating, giving rise to spectrally narrow features that shift with emission angle across much of the mid-wave infrared. For collection angles approaching 0°, we are able to obtain linewidths of ∼2.4 meV across the spectral/angular emission of the LED, corresponding to λ/Δλ∼570. Fine control of emission wavelength can be achieved by tuning the applied current, which causes a redshift of approximately 20 nm due to the thermo-optic effect. The presented device has the potential for use in compact, high bandwidth, and low-cost mid-wave infrared sensing applications requiring spectral discrimination. 
    more » « less
  3. Optical filters with narrow transmission band above the bandgap of thermophotovoltaic (TPV) cells are not restrained by the rigorous thermal reliability as needed for the emitters. In this work, a novel metasurface filter made of an aluminum nanopillar (AlNP) array on a quartz substrate is proposed to achieve spectrally selective transmission above the bandgap of the TPV cell. Optical simulations using Finite-difference time-domain were carefully performed to determine the appropriate AlNP period, diameter, and height such that the resulting nanopillar array will show narrowband transmission at a wavelength of 1.9 μm, which is close to the bandgap of a commercial gallium antimonide (GaSb) TPV cell. The narrow-band transmission enhancement can be attributed to the magnetic polariton (MP) resonance between neighboring Al nanopillars. The MP mechanism is further confirmed by an inductor-capacitor circuit model and the effects of the nanopillars period, diameter, height, as well as incidence angles were discussed. Moreover, open-circuit voltage, short-circuit current density, output electric power, and conversion efficiency were evaluated for the GaSb TPV cell coupled with the AlNP metasurface filter structure with enhanced TPV performance. 
    more » « less
  4. A diode is fabricated using poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT‐PSS) and n‐doped Si. Using an ionic liquid (IL) gel as the gate dielectric, the diode rectification ratio is tunable up to four orders of magnitude at very low operating voltages. Both p–n and Schottky type diodes are observed in the same device depending on the polarity of the gate voltage. IL‐gated electrostatic/electrochemical doping in PEDOT‐PSS is believed to be responsible for this switch. The turn‐on voltage in the first quadrant of the current–voltage (I–V) curve for the p–n diode is in the range 0.2–0.4 V. The Schottky diode operates in the third quadrant. This is the first report on a tunable diode using an IL to control its operation, and the low operating voltages make these diodes excellent candidates for use in reduced power consumption electronics. 
    more » « less
  5. Interest in thermal batteries for inexpensive grid-scale storage of renewable energy motivates the development of photovoltaics that efficiently convert very high temperature thermal emission to electrical energy. We have previously shown that InGaAs air-bridge cells can increase TPV efficiency by −30% compared to cells with more conventional back surface reflectors. In this study, we design and experimentally characterize airbridge cells with wider bandgaps for applications at higher emission temperatures. Parametric studies with varying bandgap and emitter temperature identify high performance regimes. At temperatures up to 2000K, predicted device efficiencies of single-junction air-bridge cells match that of record-holding multi-junction cells. Furthermore, a novel platform for device testing using porous graphite emitters is designed and experimentally demonstrated. 
    more » « less