skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO2 and HfO2
Abstract Structure and thermodynamics of pure cubic ZrO2and HfO2were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automatedab initiomolecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.55 ± 0.09% for ZrO2and 0.87 ± 0.08% for HfO2), density and thermal expansion. Fusion enthalpies were measured using drop and catch calorimetry on laser heated levitated samples as 55 ± 7 kJ/mol for ZrO2and 61 ± 10 kJ/mol for HfO2, compared with 54 ± 2 and 52 ± 2 kJ/mol from computation. Volumetric thermal expansion for cubic ZrO2and HfO2are similar and reach (4 ± 1)·10−5/K from experiment and (5 ± 1)·10−5/K from computation. An agreement with experiment renders confidence in values obtained exclusively from computation: namely heat capacity of cubic HfO2and ZrO2, volume change on melting, and thermal expansion of the liquid to 3127 °C. Computed oxygen diffusion coefficients indicate that above 2400 °C pure ZrO2is an excellent oxygen conductor, perhaps even better than YSZ.  more » « less
Award ID(s):
1835848 1835939
PAR ID:
10153239
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Knowledge about phase transitions in doped HfO2and ZrO2‐based films is crucial for developing future ferroelectric devices. These devices should perform in ambient temperature ranges with no degradation of device performance. Here, the phase transition from the polar orthorhombic to the nonpolar tetragonal phase in thin films is of significant interest. Detailed electrical and structural characterization is performed on 10 nm mixed HfxZr1‐xO2binary oxides with different ZrO2in HfO2and small changes in oxygen content. Both dopant and oxygen content directly impact the phase transition temperature between the polar and nonpolar phase. A first‐order phase transition with thermal hysteresis is observed from the nonpolar to the polar phase with a maximum in the dielectric constant. The observed phase transition temperatures confirm trends as obtained by DFT calculations. Based on the outcome of the measurements, the classification of the ferroelectric material is discussed. 
    more » « less
  2. Metastable materials that represent excursions from thermodynamic minima are characterized by distinctive structural motifs and electronic structure, which frequently underpins new function. The binary oxides of hafnium present a rich diversity of crystal structures and are of considerable technological importance given their high dielectric constants, refractory characteristics, radiation hardness, and anion conductivity; however, high-symmetry tetragonal and cubic polymorphs of HfO 2 are accessible only at substantially elevated temperatures (1720 and 2600 °C, respectively). Here, we demonstrate that the core–shell arrangement of VO 2 and amorphous HfO 2 promotes outwards oxygen diffusion along an electropositivity gradient and yields an epitaxially matched V 2 O 3 /HfO 2 interface that allows for the unprecedented stabilization of the metastable cubic polymorph of HfO 2 under ambient conditions. Free-standing cubic HfO 2 , otherwise accessible only above 2600 °C, is stabilized by acid etching of the vanadium oxide core. In contrast, interdiffusion under oxidative conditions yields the negative thermal expansion material HfV 2 O 7 . Variable temperature powder X-ray diffraction demonstrate that the prepared HfV 2 O 7 exhibits pronounced negative thermal expansion in the temperature range between 150 and 700 °C. The results demonstrate the potential of using epitaxial crystallographic relationships to facilitate preferential nucleation of otherwise inaccessible metastable compounds. 
    more » « less
  3. High-level ab initio CCSD(T) and spin-orbit icMRCI+Q calculations were used to predict potential energy curves (PECs) for the lowest-lying states of ZrO, ZrS, HfO, and HfS. The prediction of the ground state is basis set dependent at the icMRCI+Q level for ZrO and ZrS due to the small singlet-triplet splitting between the lowest 1Σ+ and 3Δ states. CCSD(T) with a spin orbit correction predicted the 1Σ+ ground state in agreement with experiment. New all-electron basis sets were developed for Hf to improve the results over those predicted by use of effective core potentials (ECPs) that subsume the 4f electrons into the definition of the core. The use of the new DK-4f basis sets rather than ECPs became more important for HfO and HfS where there is a lack of a good core-valence separation. icMRCI+Q, CCSD(T), and DFT calculations for the spectroscopic parameters of ZrO, ZrS, HfO, and HfS were benchmarked with available experimental data. Bond dissociation energies (BDEs) of these four systems were calculated at the Feller-Peterson-Dixon (FPD) level to be 762.1 (ZrO), 543.5 (ZrS), 803.8 (HfO), and 575.1 kJ/mol (HfS), in excellent agreement with experiment. The HfS BDE was remeasured using the R3PI method, providing an updated experimental measurement of D0(HfS) = 5.978 ± 0.002 eV = 576.8 ± 0.2 kJ/mol. This experimental value, combined with experimental measurements of the ionization energies of Hf and HfS, gives the cationic BDE of D0(Hf+-S) = 5.124 ± 0.002 eV = 494.4 ± 0.2 kJ/mol. 
    more » « less
  4. Abstract The previously unknown experimental HfO2–Ta2O5‐temperature phase diagram has been elucidated up to 3000°C using a quadrupole lamp furnace and conical nozzle levitator system equipped with a CO2laser, in conjunction with synchrotron X‐ray diffraction. These in‐situ techniques allowed the determination of the following: (a) liquidus, solidus, and invariant transformation temperatures as a function of composition from thermal arrest experiments, (b) determination of equilibrium phases through testing of reversibility via in‐situ X‐ray diffraction, and (c) molar volume measurements as a function of temperature for equilibrium phases. From these, an experimental HfO2–Ta2O5‐temperature phase diagram has been constructed which is consistent with the Gibbs Phase Rule. 
    more » « less
  5. A new tetragonal polymorph of CaZrF6 can be prepared by high energy ball milling of a CaF2/ZrF4 mixture, followed by heat treatment at 325 °C. This polymorph is thermodynamically stable with respect to the well-known cubic form at low temperatures. However, it readily transforms to the cubic form on heating above ∼400 °C. The tetragonal (β) CaZrF6 is not isostructural with any previously known alkaline earth AZrF6 phase. Unlike the cubic form, which shows strong negative thermal expansion over a wide temperature range, the tetragonal form displays positive thermal expansion in all directions (100–400 K: αl ∼ +17 × 10−6 K−1 and +13 × 10−6 K−1 along the a- and c-axes, respectively). 
    more » « less