skip to main content


Title: Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia
Abstract

Coral abundance continues to decline on tropical reefs around the world, and this trend suggests that coral reefs may not persist beyond the current century. In contrast, this study describes the near-complete mortality of corals on the outer reef (10 m and 17 m depth) of the north shore of Mo’orea, French Polynesia, from 2005 to 2010, followed by unprecedented recovery from 2011 to 2017. Intense corallivory and a cyclone drove coral cover from 33–48% to <3% by 2010, but over the following seven years, recovery occurred through rapid population growth (up to 12% cover y−1) to 25–74% cover by 2017. The thirteen-year, U-shape trajectory of coral cover over time created by the loss and replacement of millions of corals through sexual reproduction underscores the potential for beneficial genetic responses to environmental conditions for at least one genus,Pocillopora. The high ecological resilience of this coral community appears to have been enhanced by variation among genera in the susceptibility to declining cover, and the capacity for population growth (i.e., response diversity). These results suggest that the outer coral communities of Mo’orea may be poised for genetic changes that could affect their capacity to persistence.

 
more » « less
Award ID(s):
1637396
NSF-PAR ID:
10153255
Author(s) / Creator(s):
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    On most tropical coral reefs, decades of disturbances have ratcheted down coral cover to create low abundance communities. In such a state, the reefs of St. John,USVirgin Islands, were hit by two Category 5 hurricanes in September 2017, yet the effects on two sites dominated byOrbicella annulariswere minor in terms of coral cover. To explore the implications of this outcome, the fates ofO. annulariscolonies were determined from photoquadrats and used to prepare size‐based matrix models for the year preceding the storms and the four months bracketing the storms. The populations displayed contrasting dynamics from 1988 to July 2017, with coral cover declining from 43% to 5% at Yawzi Point but remaining at ~30% at Tektite. Over this period, colony sizes declined, with ≥82% having planar areas ≤50 cm2(i.e., the smallest size class) by July 2017, and while densities declined from 47 to 8 colonies/m2at Yawzi Point, they increased from 36 to 51 colonies/m2at Tektite. Hurricanes Irma and Maria depressed coral cover by 1–4%, transitioned colonies into the smallest size class (>87% by November), killed 27% and 5% of the colonies in the smallest size class at Yawzi Point and Tektite, respectively, and depressed the 5‐yr intrinsic rate of population growth (λ) to 0.53–0.87. Twenty‐year projections suggested these demographic effects will not have ecologically meaningful impacts on population size, at least compared to projections initiated assuming Hurricanes Irma and Maria had not occurred. With low cover ofO. annularisdistributed among many small colonies, future disturbances may play more important roles in winnowing the few remaining host genotypes rather than further depressing coral cover.

     
    more » « less
  2. Abstract

    The prevalence of coral bleaching due to thermal stress has been increasing on coral reefs worldwide. While many studies have documented how corals respond to warming, fewer have focused on benthic community responses over longer time periods or on the response of non-coral taxa (e.g., crustose coralline algae, macroalgae, or turf). Here, we quantify spatial and temporal changes in benthic community composition over a decade using image analysis of permanent photoquadrats on Palmyra Atoll in the central Pacific Ocean. Eighty permanent plots were photographed annually between 2009 and 2018 on both the wave-exposed fore reef (FR, 10 m depth,n = 4 sites) and the wave-sheltered reef terrace (RT, 5 m depth,n = 4 sites) habitats. The El Niño events of 2009–2010 and 2015–2016 resulted in acute thermal stress and coral bleaching was observed at both reef habitats during these events. Across 10 yr and two bleaching events, the benthic community structure on Palmyra shows evidence of long-term stability. Communities on the RT exhibited minimal change in percent cover of the dominant functional groups, while the FR had greater variability and minor declines in hard coral cover. There was also spatial variation in the trajectory of each site through time. Coral cover decreased at some sites 1 yr following both bleaching events and was replaced by different algal groups depending on the site, yet returned to pre-bleaching levels within 2 yr. Overall, our data reveal the resilience of calcifier-dominated coral reef communities on Palmyra Atoll that have persisted over the last decade despite two bleaching events, demonstrating the capacity for these reefs to recover from and/or withstand disturbances in the absence of local stressors.

     
    more » « less
  3. Coral reefs in Moorea, French Polynesia, suffered catastrophic coral mortality through predation by Acanthaster planci from 2006 to 2010, and Cyclone Oli in 2010, yet by 2015 some coral populations were approaching pre-disturbance sizes. Using long-term study plots, we quantified population dynamics of spawning Pocillopora spp. along the north shore of Moorea between 2010 and 2014, and considered evidence that population recovery could be supported by self-seeding. Results scaled up from study plots and settlement tiles suggest that the number of Pocillopora spp. colonies on the outer reef increased 1,890-fold between 2010 and 2014/2015, and in the back reef, 8-fold between 2010 and 2014/2015. Assuming that spawning Pocillopora spp. in Moorea release similar numbers of eggs as con-generics in Hawaii, and fertilization success is similar to other spawning corals, the capacity of Pocillopora spp. to produce larvae was estimated. These estimates suggest that Pocillopora spp. in Moorea produced a large excess of larvae in 2010 and 2014 relative to the number required to produce the recruits found in the back reef and outer reef in 2010 and 2014, even assuming that ∼99.9% of the larvae do not recruit in Moorea. Less than a third of the recruits in one year would have to survive to produce the juvenile Pocillopora spp. found in the back and outer reefs in 2010 and 2014/2015. Our first order approximations reveal the potential for Pocillopora spp. on the north shore of Moorea to produce enough larvae to support local recruitment and population recovery following a catastrophic disturbance. 
    more » « less
  4. Ocean acidification (OA) is negatively affecting calcification in a wide variety of marine organisms. These effects are acute for many tropical scleractinian corals under short-term experimental conditions, but it is unclear how these effects interact with ecological processes, such as competition for space, to impact coral communities over multiple years. This study sought to test the use of individual-based models (IBMs) as a tool to scale up the effects of OA recorded in short-term studies to community-scale impacts, combining data from field surveys and mesocosm experiments to parameterize an IBM of coral community recovery on the fore reef of Moorea, French Polynesia. Focusing on the dominant coral genera from the fore reef, Pocillopora , Acropora , Montipora and Porites , model efficacy first was evaluated through the comparison of simulated and empirical dynamics from 2010–2016, when the reef was recovering from sequential acute disturbances (a crown-of-thorns seastar outbreak followed by a cyclone) that reduced coral cover to ~0% by 2010. The model then was used to evaluate how the effects of OA (1,100–1,200 µatm pCO 2 ) on coral growth and competition among corals affected recovery rates (as assessed by changes in % cover y −1 ) of each coral population between 2010–2016. The model indicated that recovery rates for the fore reef community was halved by OA over 7 years, with cover increasing at 11% y −1 under ambient conditions and 4.8% y −1 under OA conditions. However, when OA was implemented to affect coral growth and not competition among corals, coral community recovery increased to 7.2% y −1 , highlighting mechanisms other than growth suppression (i.e., competition), through which OA can impact recovery. Our study reveals the potential for IBMs to assess the impacts of OA on coral communities at temporal and spatial scales beyond the capabilities of experimental studies, but this potential will not be realized unless empirical analyses address a wider variety of response variables representing ecological, physiological and functional domains. 
    more » « less
  5. Abstract

    Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo’orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observedAcropora hyacinthusindividuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments fromA. hyacinthuscolonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation of energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance.

     
    more » « less