Abstract Ecosystem responses to disturbance depend on the nature of the perturbation and the ecological legacies left behind, making it critical to understand how climate‐driven changes in disturbance regimes modify resilience properties of ecosystems. For coral reefs, recent increases in severe marine heat waves now co‐occur with powerful storms, the historic agent of disturbance. While storms kill coral and remove their skeletons, heat waves bleach and kill corals but leave their skeletons intact. Here, we explored how the material legacy of dead coral skeletons modifies two key ecological processes that underpin coral reef resilience: the ability of herbivores to control macroalgae (spatial competitors of corals), and the replenishment of new coral colonies. Our findings, grounded by a major bleaching event at our long‐term study locale, revealed that the presence of structurally complex dead skeletons reduced grazing on turf algae by ~80%. For macroalgae, browsing was reduced by >40% on less preferred (unpalatable) taxa, but only by ~10% on more preferred taxa. This enabled unpalatable macroalgae to reach ~45% cover in 2 years. By contrast, herbivores prevented macroalgae from becoming established on adjacent reefs that lacked skeletons. Manipulation of unpalatable macroalgae revealed that the cover reached after 1 year (~20%) reduced recruitment of corals by 50%. The effect of skeletons on juvenile coral growth was contingent on the timing of settlement relative to the disturbance. If corals settled directly after bleaching (before macroalgae colonized), dead skeletons enhanced colony growth by 34%, but this benefit was lost if corals colonized dead skeletons a year after the disturbance once macroalgae had proliferated. These findings underscore how a material legacy from a changing disturbance regime can alter ecosystem resilience properties by disrupting key trophic and competitive interactions that shape post‐disturbance community dynamics.
more »
« less
Friend of the dead: Zoanthids enhance the persistence of dead coral reef framework under high consumer pressure
Abstract Consumers can play critical roles in ecosystem resilience by modifying community resistance and recovery rates. In coral reefs, grazers can increase reef resilience by controlling algae and maintaining open space for coral recruitment, but can also erode the reef framework critical for coral recovery. Here we examine the context‐dependent effects of herbivores on reef persistence in Caribbean Panamá. Using a series of lab and field experiments, we found that the erosional effects of the herbivorous reef urchin (Echinometra viridis) were 2 orders of magnitude greater on dead corals than live corals, and surveys across multiple similarly overfished reefs revealed a positive relationship between urchin densities and percent cover of bare dead coral with urchin densities exceeding 150 m−2in some reefs. However, we observed that a mat‐forming zoanthid (Zoanthus pulchellus), found exclusively on dead corals, had an inverse spatial relationship with urchins. Through a series of field experiments, we found that zoanthid overgrowth repelled urchins, increased dead coral persistence, and decreased erosion of dead corals making up the reef framework by more than 50% over a 22‐month period. Our findings reveal that zoanthids can provide associational refuge to dead corals by enhancing their persistence under high urchin grazing pressure. We suggest that secondary space‐holders, such as zoanthids, may play increasingly important functional roles in degraded reef systems by shielding coral skeletons from external bioeroders. Moreover, the Stress Gradient Hypothesis, which predicts that the importance of positive interactions such as associational refuges increases with consumer pressure, extends to dead foundation species such as coral skeletons crucial for ecosystem recovery.
more »
« less
- Award ID(s):
- 2238422
- PAR ID:
- 10583200
- Publisher / Repository:
- Ecosphere
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 15
- Issue:
- 9
- ISSN:
- 2150-8925
- Page Range / eLocation ID:
- e4940
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Standing dead structures of habitat‐forming organisms (e.g., dead trees, coral skeletons, oyster shells) killed by a disturbance are material legacies that can affect ecosystem recovery processes. Many ecosystems are subject to different types of disturbance that either remove biogenic structures or leave them intact. Here we used a mathematical model to quantify how the resilience of coral reef ecosystems may be differentially affected following structure‐removing and structure‐retaining disturbance events, focusing in particular on the potential for regime shifts from coral to macroalgae. We found that dead coral skeletons could substantially diminish coral resilience if they provided macroalgae refuge from herbivory, a key feedback associated with the recovery of coral populations. Our model shows that the material legacy of dead skeletons broadens the range of herbivore biomass over which coral and macroalgae states are bistable. Hence, material legacies can alter resilience by modifying the underlying relationship between a system driver (herbivory) and a state variable (coral cover).more » « less
-
Abstract Human impacts are dramatically changing ecological communities, motivating research on resilience. Tropical reefs are increasingly undergoing transitions to short algal turf, a successional community that mediates either recovery to coral by allowing recruitment or transitions to longer turf/macroalgae. Intense herbivory limits turf height; subsequently, overfishing erodes resilience of the desirable coral-dominated reef state. Increased sedimentation also erodes resilience through smothering and herbivory suppression. In spite of this critical role, most herbivory studies on tropical reefs focus on fishes, and the contribution of urchins remains under-studied. To test how different herbivory and sedimentation scenarios impact turf resilience, we experimentally simulated, in situ, four future overfishing scenarios derived from patterns of fish and urchin loss in other reef systems and two future sedimentation regimes. We found urchins were critical to short turf resilience, maintaining this state even with reduced fish herbivory and increased sediment. Further, urchins cleared sediment, facilitating fish herbivory. This study articulates the likelihood of increased reliance on urchins on impacted reefs in the Anthropocene.more » « less
-
Abstract Coral abundance continues to decline on tropical reefs around the world, and this trend suggests that coral reefs may not persist beyond the current century. In contrast, this study describes the near-complete mortality of corals on the outer reef (10 m and 17 m depth) of the north shore of Mo’orea, French Polynesia, from 2005 to 2010, followed by unprecedented recovery from 2011 to 2017. Intense corallivory and a cyclone drove coral cover from 33–48% to <3% by 2010, but over the following seven years, recovery occurred through rapid population growth (up to 12% cover y−1) to 25–74% cover by 2017. The thirteen-year, U-shape trajectory of coral cover over time created by the loss and replacement of millions of corals through sexual reproduction underscores the potential for beneficial genetic responses to environmental conditions for at least one genus,Pocillopora. The high ecological resilience of this coral community appears to have been enhanced by variation among genera in the susceptibility to declining cover, and the capacity for population growth (i.e., response diversity). These results suggest that the outer coral communities of Mo’orea may be poised for genetic changes that could affect their capacity to persistence.more » « less
-
Abstract Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine‐protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.more » « less
An official website of the United States government

